Padró J.-C., Carabassa V., Balagué J., Brotons L., Alcañiz J.M., Pons X. (2019) Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Science of the Total Environment. 657: 1602-1614.EnlaceDoi: 10.1016/j.scitotenv.2018.12.156
Open-pit mine is still an unavoidable activity but can become unsustainable without the restoration of degraded sites. Monitoring the restoration after extractive activities is a legal requirement for mine companies and public administrations in many countries, involving financial provisions for environmental liabilities. The objective of this contribution is to present a rigorous, low-cost and easy-to-use application of Unmanned Aerial Systems (UAS) for supporting opencast mining and restoration monitoring, complementing the inspections with very high (
Ribeiro I., Proença V., Serra P., Palma J., Domingo-Marimon C., Pons X., Domingos T. (2019) Remotely sensed indicators and open-access biodiversity data to assess bird diversity patterns in Mediterranean rural landscapes. Scientific Reports. 9: 0-0.EnlaceDoi: 10.1038/s41598-019-43330-3
Biodiversity monitoring at simultaneously fine spatial resolutions and large spatial extents is needed but limited by operational trade-offs and costs. Open-access data may be cost-effective to address those limitations. We test the use of open-access satellite imagery (NDVI texture variables) and biodiversity data, assembled from GBIF, to investigate the relative importance of variables of habitat extent and structure as indicators of bird community richness and dissimilarity in the Alentejo region (Portugal). Results show that, at the landscape scale, forest bird richness is better indicated by the availability of tree cover in the overall landscape than by the extent or structure of the forest habitats. Open-land birds also respond to landscape structure, namely to the spectral homogeneity and size of open-land patches and to the presence of perennial vegetation amid herbaceous habitats. Moreover, structure variables were more important than climate variables or geographic distance to explain community dissimilarity patterns at the regional scale. Overall, summer imagery, when perennial vegetation is more discernible, is particularly suited to inform indicators of forest and open-land bird community richness and dissimilarity, while spring imagery appears to be also useful to inform indicators of open-land bird richness. © 2019, The Author(s).
Masó J., Zabala A., Serral I., Pons X. (2018) Remote sensing analytical geospatial operations directly in the web browser. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. 42: 475-482.EnlaceDoi: 10.5194/isprs-archives-XLII-4-403-2018
Current map viewers that run on modern web browsers are mainly requesting images generated on the fly in the server side and transferred in pictorial format that they can display (PNG or JPEG). In OGC WMS standard this is done for the whole map view while in WMTS is done per tiles. The user cannot fine tune personalized visualization or data analysis in the client side. Remote sensing data is structured in bands that are visualize individually (manually adjusting contrast), create RGB combinations or present spectral indices. When these operations are not available in map browsers professional are forced to download hundreds of gigabytes of remote sensing imagery to take a good look at the data before deciding if it fits for a purpose. A possible solution is to create a web service that is able to perform these operations on the server side (https://www.sentinel-hub.com). This paper proposes that the server should communicate the data values to the client in a format that the client can directly process using two new additions in HTML5: canvas edition and array buffers. In the client side, the user can interact with a JavaScript interface changing symbolizations and doing some analytical operations without having to request any data again to the server. As a bonus, the user is able to perform queries to the data in a more dynamic way, applying spatial filters, creating histograms, generating animations of a time series or performing complex calculations among bands of the different loaded datasets. © Authors 2018.
Padró J.-C., Muñoz F.-J., Ávila L.Á., Pesquer L., Pons X. (2018) Radiometric correction of Landsat-8 and Sentinel-2A scenes using drone imagery in synergy with field spectroradiometry. Remote Sensing. 10: 0-0.EnlaceDoi: 10.3390/rs10111687
The main objective of this research is to apply unmanned aerial system (UAS) data in synergy with field spectroradiometry for the accurate radiometric correction of Landsat-8 (L8) and Sentinel-2 (S2) imagery. The central hypothesis is that imagery acquired with multispectral UAS sensors that are well calibrated with highly accurate field measurements can fill in the scale gap between satellite imagery and conventional in situ measurements; this can be possible by sampling a larger area, including difficult-to-access land covers, in less time while simultaneously providing good radiometric quality. With this aim and by using near-coincident L8 and S2 imagery, we applied an upscaling workflow, whereby: (a) UAS-acquired multispectral data was empirically fitted to the reflectance of field measurements, with an extensive set of radiometric references distributed across the spectral domain; (b) drone data was resampled to satellite grids for comparison with the radiometrically corrected L8 and S2 official products (6S-LaSRC and Sen2Cor-SNAP, respectively) and the CorRad-MiraMon algorithm using pseudo-invariant areas, such as reflectance references (PIA-MiraMon), to examine their overall accuracy; (c) then, a subset of UAS data was used as reflectance references, in combination with the CorRad-MiraMon algorithm (UAS-MiraMon), to radiometrically correct the matching bands of UAS, L8, and S2; and (d) radiometrically corrected L8 and S2 scenes obtained with UAS-MiraMon were intercompared (intersensor coherence). In the first upscaling step, the results showed a good correlation between the field spectroradiometric measurements and the drone data in all evaluated bands (R2 > 0.946). In the second upscaling step, drone data indicated good agreement (estimated from root mean square error, RMSE) with the satellite official products in visible (VIS) bands (RMSEVIS < 2.484%), but yielded poor results in the near-infrared (NIR) band (RMSENIR > 6.688% was not very good due to spectral sensor response differences). In the third step, UAS-MiraMon indicated better agreement (RMSEVIS < 2.018%) than the other satellite radiometric correction methods in visible bands (6S-LaSRC (RMSE < 2.680%), Sen2Cor-SNAP (RMSE < 2.192%), and PIA-MiraMon (RMSE < 3.130%), but did not achieve sufficient results in the NIR band (RMSENIR < 7.530%); this also occurred with all other methods. In the intercomparison step, the UAS-MiraMon method achieved an excellent intersensor (L8-S2) coherence (RMSEVIS < 1%). The UAS-sampled area involved 51 L8 (30 m) pixels, 143 S2 (20 m) pixels, and 517 S2 (10 m) pixels. The drone time needed to cover this area was only 10 min, including areas that were difficult to access. The systematic sampling of the study area was achieved with a pixel size of 6 cm, and the raster nature of the sampling allowed for an easy but rigorous resampling of UAS data to the different satellite grids. These advances improve human capacities for conventional field spectroradiometry samplings. However, our study also shows that field spectroradiometry is the backbone that supports the full upscaling workflow. In conclusion, the synergy between field spectroradiometry, UAS sensors, and Landsat-like satellite data can be a useful tool for accurate radiometric corrections used in local environmental studies or the monitoring of protected areas around the world. © 2018 by the authors.
Blower J.D., Masó J., Díaz D., Roberts C.J., Griffiths G.H., Lewis J.P., Yang X., Pons X. (2015) Communicating thematic data quality with web map services. ISPRS International Journal of Geo-Information. 4: 1965-1981.EnlaceDoi: 10.3390/ijgi4041965
Geospatial information of many kinds, from topographic maps to scientific data, is increasingly being made available through web mapping services. These allow georeferenced map images to be served from data stores and displayed in websites and geographic information systems, where they can be integrated with other geographic information. The Open Geospatial Consortium's Web Map Service (WMS) standard has been widely adopted in diverse communities for sharing data in this way. However, current services typically provide little or no information about the quality or accuracy of the data they serve. In this paper we will describe the design and implementation of a new "quality-enabled" profile of WMS, which we call "WMS-Q". This describes how information about data quality can be transmitted to the user through WMS. Such information can exist at many levels, from entire datasets to individual measurements, and includes the many different ways in which data uncertainty can be expressed. We also describe proposed extensions to the Symbology Encoding specification, which include provision for visualizing uncertainty in raster data in a number of different ways, including contours, shading and bivariate colour maps. We shall also describe new open-source implementations of the new specifications, which include both clients and servers. © 2015 by the authors; licensee MDPI, Basel, Switzerland.
Carnicer J., Coll M., Pons X., Ninyerola M., Vayreda J., Penuelas J. (2014) Large-scale recruitment limitation in Mediterranean pines: The role of Quercus ilex and forest successional advance as key regional drivers. Global Ecology and Biogeography. 23: 371-384.EnlaceDoi: 10.1111/geb.12111
Aim: Large-scale patterns of limitations in tree recruitment remain poorly described in the Mediterranean Basin, and this information is required to assess the impacts of global warming on forests. Here, we unveil the existence of opposite trends of recruitment limitation between the dominant genera Quercus and Pinus on a large scale and identify the key ecological drivers of these diverging trends. Location: Spain Methods: We gathered data from the Spanish National Forest inventory to assess recruitment trends for the dominant species (Pinus halepensis, Pinus pinea, Pinus pinaster, Pinus nigra, Pinus sylvestris, Pinus uncinata, Quercus suber, Quercus ilex, Quercus petraea, Quercus robur, Quercus faginea and Quercus pyrenaica). We assessed the direct and indirect drivers of recruitment by applying Bayesian structural equation modelling techniques. Results: Severe limitations in recruitment were observed across extensive areas for all Pinus species studied, with recruitment failure affecting 54-71% of the surveyed plots. In striking contrast, Quercus species expanded into 41% of the plots surveyed compared to only 10% for Pinus and had a lower local recruitment failure (29% of Quercus localities compared to 63% for Pinus species). Bayesian structural equation models highlighted the key role of the presence of Q.ilex saplings and the increase in the basal area of Q.ilex in limiting recruitment in five Pinus species. The recruitment of P.sylvestris and P.nigra showed the most negative trends and was negatively associated with the impacts of fire. Main conclusions: This study identified Q.ilex, the most widespread species in this area, as a key driver of recruitment shifts on a large scale, negatively affecting most pine species with the advance of forest succession. These results highlight that the future expansion/contraction of Q.ilex stands with ongoing climate change will be a key process indirectly controlling the demographic responses of Pinus species in the Mediterranean Basin. © 2013 John Wiley & Sons Ltd.
Maso J., Pons X., Zabala A. (2014) Building the World Wide Hypermap (WWH) with a RESTful architecture. International Journal of Digital Earth. 7: 175-193.EnlaceDoi: 10.1080/17538947.2012.669414
The hypermap concept was introduced in 1992 as a way to hyperlink geospatial features to text, multimedia or other geospatial features. Since then, the concept has been used in several applications, although it has been found to have some limitations. On the other hand, Spatial Data Infrastructures (SDIs) adopt diverse and heterogeneous service oriented architectures (SOAs). They are developed by different standard bodies and are generally disconnected from mass market web solutions. This work expands the hypermap concept to overcome its limitations and harmonise it with geospatial resource oriented architecture (ROA), connecting it to the semantic web and generalising it to the World Wide Hypermap (WWH) as a tool for building a single 'Digital Earth'. Global identifiers, dynamic links, link purposes and resource management capabilities are introduced as a solution that orchestrates data, metadata and data access services in a homogeneous way. This is achieved by providing a set of rules using the current Internet paradigm formalised in the REpresentational State Transfer (REST) architecture and combining it with existing Open Geospatial Consortium (OGC) and International Organization for Standardization (ISO) standards. A reference implementation is also presented and the strategies needed to implement the WWH, which mainly consist in a set of additions to current Geographic Information System (GIS) products and a RESTful server that mediates between the Internet and the local GIS applications. © 2012 Taylor & Francis.
Pons X., Pesquer L., Cristobal J., Gonzalez-Guerrero O. (2014) Automatic and improved radiometric correction of landsat imageryusing reference values from MODIS surface reflectance images. International Journal of Applied Earth Observation and Geoinformation. 33: 243-254.EnlaceDoi: 10.1016/j.jag.2014.06.002
Radiometric correction is a prerequisite for generating high-quality scientific data, making it possibleto discriminate between product artefacts and real changes in Earth processes as well as accuratelyproduce land cover maps and detect changes. This work contributes to the automatic generation of surfacereflectance products for Landsat satellite series. Surface reflectances are generated by a new approachdeveloped from a previous simplified radiometric (atmospheric + topographic) correction model. Theproposed model keeps the core of the old model (incidence angles and cast-shadows through a digitalelevation model [DEM], Earth-Sun distance, etc.) and adds new characteristics to enhance and automatizeground reflectance retrieval. The new model includes the following new features: (1) A fitting model basedon reference values from pseudoinvariant areas that have been automatically extracted from existingreflectance products (Terra MODIS MOD09GA) that were selected also automatically by applying qualitycriteria that include a geostatistical pattern model. This guarantees the consistency of the internal andexternal series, making it unnecessary to provide extra atmospheric data for the acquisition date and time,dark objects or dense vegetation. (2) A spatial model for atmospheric optical depth that uses detailedDEM and MODTRAN simulations. (3) It is designed so that large time-series of images can be processedautomatically to produce consistent Landsat surface reflectance time-series. (4) The approach can handlemost images, acquired now or in the past, regardless of the processing system, with the exception ofthose with extremely high cloud coverage. The new methodology has been successfully applied to aseries of near 300 images of the same area including MSS, TM and ETM+ imagery as well as to differentformats and processing systems (LPGS and NLAPS from the USGS; CEOS from ESA) for different degreesof cloud coverage (up to 60%) and SLC-off. Reflectance products have been validated with some exampleapplications: time series robustness (for a pixel in a pseudoinvariant area, deviations are only 1.04% onaverage along the series), spectral signatures generation (visually coherent with the MODIS ones, butmore similar between dates), and classification (up to 4 percent points better than those obtained withthe original manual method or the CDR products). In conclusion, this new approach, that could also beapplied to other sensors with similar band configurations, offers a fully automatic and reasonably goodprocedure for the new era of long time-series of spatially detailed global remote sensing data. © 2014 The Authors.
Regos A., Dominguez J., Gil-Tena A., Brotons L., Ninyerola M., Pons X. (2014) Rural abandoned landscapes and bird assemblages: winners and losers in the rewilding of a marginal mountain area (NW Spain). Regional Environmental Change. : 0-0.EnlaceDoi: 10.1007/s10113-014-0740-7
In many regions of Europe, large-scale socio-economic changes have led to the abandonment of rural activities and a gradual takeover of natural vegetation. It is important to assess the relative positive and negative effects of land abandonment on particular areas where the low-intensity farming is no longer socially or economically viable in order to quantify the potential conservation costs and benefits of a rewilding as a land-use management policy. During the period 2000–2010, we studied the land-use/land-cover changes in an abandoned mountain landscape (Galicia, NW Spain) and evaluated the effects on breeding bird occurrence and distribution. For this purpose, we analysed remotely sensed data-derived maps in combination with data obtained from bird censuses carried out in 2000 and 2010 at both landscape and census plot scale. The results revealed a gradient of change from bare ground and open shrubland to closed shrubland and woodland. Thirteen shrubland and forest bird species showed a significant increase (including species of conservation concern such as Turtle Dove, Dartford Warbler and Western Bonelli’s Warbler), while four ecotone and open-habitat species (e.g. Red-backed Shrike) showed a significant negative trend. In conclusion, rewilding appears to have overall positive effects on biodiversity and should be considered by policy makers as alternative land-use strategy in marginal mountain areas, particularly if they have been historically affected by wildfires. Fire management aimed at favouring the creation of small burned areas in progressively closed landscapes derived from rewilding may be a complementary alternative to maintain open habitats in these areas.
Coll M., Penuelas J., Ninyerola M., Pons X., Carnicer J. (2013) Multivariate effect gradients driving forest demographic responses in the Iberian Peninsula. Forest Ecology and Management. 303: 195-209.EnlaceDoi: 10.1016/j.foreco.2013.04.010
A precise knowledge of forest demographic gradients in the Mediterranean area is essential to assess future impacts of climate change and extreme drought events. Here we studied the geographical patterns of forest demography variables (tree recruitment, growth and mortality) of the main species in Spain and assessed their multiple ecological drivers (climate, topography, soil, forest stand attributes and tree-specific traits) as well as the geographical variability of their effects and interactions. Quantile modeling analyses allowed a synthetic description of the gradients of multiple covariates influencing forest demography in this area. These multivariate effect gradients showed significantly stronger interactions at the extremes of the rainfall gradient. Remarkably, in all demographic variables, qualitatively different levels of effects and interactions were observed across tree-size classes. In addition, significant differences in demographic responses and effect gradients were also evident between the dominant genus Quercus and Pinus. Quercus species presented significantly higher percentage of plots colonized by new recruits, whereas in Pinus recruitment limitation was significantly higher. Contrasting positive and negative growth responses to temperature were also observed in Quercus and Pinus, respectively. Overall, our results synthesize forest demographic responses across climatic gradients in Spain, and unveil the interactions between driving factors operating in the drier and wetter edges. © 2013 Elsevier B.V.
Date de alta en el Newsletter para recibir todas las novedades del CREAF en tu mail.
Date de alta en nuestro Newsletter par recibir todas las novedades del CREAF en tu email
PATRONATO
DISTINCIONES
MIEMBROS DE
CON EL APOYO DE