Differences in photosynthesis and terpene content in leaves and roots of wild-type and transgenic Arabidopsis thaliana plants

Blanch J.S., Peñuelas J., Llusià J., Sardans J., Owen S.M. (2015) Differences in photosynthesis and terpene content in leaves and roots of wild-type and transgenic Arabidopsis thaliana plants. Russian Journal of Plant Physiology. 62: 823-829.
Link
Doi: 10.1134/S1021443715060035

Abstract:

We investigated the hypotheses that two different varieties of Arabidopsis thaliana show differences in physiology and terpene production. The two varieties of A. thaliana used in this study were wild-type (WT) and transgenic line (CoxIV-FaNES I) genetically modified to emit nerolidol with linalool/nerolidol synthase (COX). Photosynthetic rate, electron transport rate, fluorescence, leaf volatile terpene contents and root volatile terpene contents were analyzed. For both types, we found co-eluting α-pinene+β-ocimene, limonene, and humulene in leaves; and in the roots we found co-eluting α-pinene+β-ocimene, sabinene+β-pinene, β-myrcene, limonene, and humulene. At the end of the growing cycle, COX plants tended to have lower pools of terpene compounds in their leaves, with 78.6% lower photosynthesis rates and 30.8% lower electron transport rates, compared with WT plants at that time. The maximal photochemical efficiency Fv/Fm was also significantly lower (25.5%) in COX plants, indicating that these varieties were more stressed than WT plants. However, COX plants had higher (239%) root terpene contents compared to WT plants. COX plants appear to favor root production of volatile terpenes rather than leaf production. Thus we conclude that there were significant differences between COX and WT plants in terms of terpenoid pools, stress status and physiology. © 2015, Pleiades Publishing, Ltd.

Read more

Communicating thematic data quality with web map services

Blower J.D., Masó J., Díaz D., Roberts C.J., Griffiths G.H., Lewis J.P., Yang X., Pons X. (2015) Communicating thematic data quality with web map services. ISPRS International Journal of Geo-Information. 4: 1965-1981.
Link
Doi: 10.3390/ijgi4041965

Abstract:

Geospatial information of many kinds, from topographic maps to scientific data, is increasingly being made available through web mapping services. These allow georeferenced map images to be served from data stores and displayed in websites and geographic information systems, where they can be integrated with other geographic information. The Open Geospatial Consortium's Web Map Service (WMS) standard has been widely adopted in diverse communities for sharing data in this way. However, current services typically provide little or no information about the quality or accuracy of the data they serve. In this paper we will describe the design and implementation of a new "quality-enabled" profile of WMS, which we call "WMS-Q". This describes how information about data quality can be transmitted to the user through WMS. Such information can exist at many levels, from entire datasets to individual measurements, and includes the many different ways in which data uncertainty can be expressed. We also describe proposed extensions to the Symbology Encoding specification, which include provision for visualizing uncertainty in raster data in a number of different ways, including contours, shading and bivariate colour maps. We shall also describe new open-source implementations of the new specifications, which include both clients and servers. © 2015 by the authors; licensee MDPI, Basel, Switzerland.

Read more

Unexpected consequences of a drier world: Evidence that delay in late summer rains biases the population sex ratio of an insect

Bonal R., Hernández M., Espelta J.M., Muñoz A., Aparicio J.M. (2015) Unexpected consequences of a drier world: Evidence that delay in late summer rains biases the population sex ratio of an insect. Royal Society Open Science. 2: 0-0.
Link
Doi: 10.1098/rsos.150198

Abstract:

The complexity of animal life histories makes it difficult to predict the consequences of climate change on their populations. In this paper, we show, for the first time, that longer summer drought episodes, such as those predicted for the dry Mediterranean region under climate change, may bias insect population sex ratio. Many Mediterranean organisms, like the weevil Curculio elephas, become active again after summer drought. This insect depends on late summer rainfall to soften the soil and allow adult emergence from their underground refuges. We found that, as in many protandric species, more C. elephas females emerged later in the season. Male emergence timing was on average earlier and also more dependent on the beginning of late summer rainfall. When these rains were delayed, the observed weevil sex ratio was biased towards females. So far, the effects of global warming on animal sex ratios has been reported for temperature-dependent sex determination in reptiles. Our results show that rainfall timing can also bias the sex ratio in an insect, and highlight the need for keeping a phenological perspective to predict the consequences of climate change. We must consider not just the magnitude of the predicted changes in temperature and rainfall but also the effects of their timing. © 2015 The Authors.

Read more

Institutional factors and opportunities for adapting European forest management to climate change

Bouriaud L., Marzano M., Lexer M., Nichiforel L., Reyer C., Temperli C., Peltola H., Elkin C., Duduman G., Taylor P., Bathgate S., Borges J.G., Clerkx S., Garcia-Gonzalo J., Gracia C., Hengeveld G., Kellomaki S., Kostov G., Maroschek M., Muys B., Nabuurs G.-J., Nicoll B., Palahi M., Rammer W., Ray D., Schelhaas M.-J., Sing L., Tome M., Zell J., Hanewinkel M. (2015) Institutional factors and opportunities for adapting European forest management to climate change. Regional Environmental Change. : 0-0.
Link
Doi: 10.1007/s10113-015-0852-8

Abstract:

Despite the fact that the institutional environment is acknowledged to influence the implementation of regional adaptations of forest management to climate change, there are few empirical studies addressing the institutional factors and opportunities of adaptation. Using Ostrom’s institutional analysis and development framework, we aimed to identify: (1) the critical and distinctive characteristics of the forest resource and institutional context that may determine how climate change-adaptive forest management measures are implemented and (2) the opportunities for implementing the planned adaptation measures. The analysis is performed on ten European case study regions which differed in many resource-dependent factors, policy arena factors and incentives for changes. The main factors influencing the adaptation are the ownership pattern, the level of policy formation and the nature of forest goods and services. Opportunities for adaptation are driven by the openness of the forest management planning processes to the stakeholders participation, the degree to which business as usual management is projected to be non-satisfactory in the future, and by the number and nature of obstacles to adaptation. Promoting local self-governance mechanisms and the participation of the external stakeholders in forest management planning or in the regional forest or climate change policy adaptation may be a way of overcoming path dependency, behavioural obstacles and potential policy failures in implementing adaptation. The study argues that both climate change belief systems and political participation are important to explain adaptation to climate change when multiple decision-making levels are at stake. © 2015 Springer-Verlag Berlin Heidelberg

Read more

Ground-and satellite-based evidence of the biophysical mechanisms behind the greening Sahel

Brandt M., Mbow C., Diouf A.A., Verger A., Samimi C., Fensholt R. (2015) Ground-and satellite-based evidence of the biophysical mechanisms behind the greening Sahel. Global Change Biology. 21: 1610-1620.
Link
Doi: 10.1111/gcb.12807

Abstract:

After a dry period with prolonged droughts in the 1970s and 1980s, recent scientific outcome suggests that the decades of abnormally dry conditions in the Sahel have been reversed by positive anomalies in rainfall. Various remote sensing studies observed a positive trend in vegetation greenness over the last decades which is known as the re-greening of the Sahel. However, little investment has been made in including long-term ground-based data collections to evaluate and better understand the biophysical mechanisms behind these findings. Thus, deductions on a possible increment in biomass remain speculative. Our aim is to bridge these gaps and give specifics on the biophysical background factors of the re-greening Sahel. Therefore, a trend analysis was applied on long time series (1987-2013) of satellite-based vegetation and rainfall data, as well as on ground-observations of leaf biomass of woody species, herb biomass, and woody species abundance in different ecosystems located in the Sahel zone of Senegal. We found that the positive trend observed in satellite vegetation time series (+36%) is caused by an increment of in situ measured biomass (+34%), which is highly controlled by precipitation (+40%). Whereas herb biomass shows large inter-annual fluctuations rather than a clear trend, leaf biomass of woody species has doubled within 27 years (+103%). This increase in woody biomass did not reflect on biodiversity with 11 of 16 woody species declining in abundance over the period. We conclude that the observed greening in the Senegalese Sahel is primarily related to an increasing tree cover that caused satellite-driven vegetation indices to increase with rainfall reversal. Copyright © 2015 John Wiley & Sons Ltd214 April 2015 10.1111/gcb.12807 Primary Research Article Primary Research Articles © 2014 John Wiley & Sons Ltd.

Read more

Peer-review warning: System error, reviewers not found

Brotons L. (2015) Peer-review warning: System error, reviewers not found. Frontiers in Ecology and the Environment. 13: 241-242.
Link
Doi: 10.1890/15.WB.009

Abstract:

[No abstract available]

Read more

Coupling a water balance model with forest inventory data to predict drought stress: The role of forest structural changes vs. climate changes

Caceres M.D., Martinez-Vilalta J., Coll L., Llorens P., Casals P., Poyatos R., Pausas J.G., Brotons L. (2015) Coupling a water balance model with forest inventory data to predict drought stress: The role of forest structural changes vs. climate changes. Agricultural and Forest Meteorology. 213: 77-90.
Link
Doi: 10.1016/j.agrformet.2015.06.012

Abstract:

Mechanistic water balance models can be used to predict soil moisture dynamics and drought stress in individual forest stands. Predicting current and future levels of plant drought stress is important not only at the local scale, but also at larger, landscape to regional, scales, because these are the management scales at which adaptation and mitigation strategies are implemented. To obtain reliable predictions of soil moisture and plant drought stress over large extents, water balance models need to be complemented with detailed information about the spatial variation of vegetation and soil attributes. We designed, calibrated and validated a water balance model that produces annual estimates of drought intensity and duration for all plant cohorts in a forest stand. Taking Catalonia (NE Spain) as a case study, we coupled this model with plot records from two Spanish forest inventories in which species identity, diameter and height of plant cohorts were available. Leaf area index of each plant cohort was estimated from basal area using species-specific relationships. Vertical root distribution for each species in each forest plot was estimated by determining the distribution that maximized transpiration in the model, given average climatic conditions, soil attributes and stand density. We determined recent trends (period 1980-2010) in drought stress for the main tree species in Catalonia; where forest growth and densification occurs in many areas as a result of rural abandonment and decrease of forest management. Regional increases in drought stress were detected for most tree species, although we found high variation in stress changes among individual forest plots. Moreover, predicted trends in tree drought stress were mainly due to changes in leaf area occurred between the two forest inventories rather than to climatic trends. We conclude that forest structure needs to be explicitly considered in assessments of plant drought stress patterns and trends over large geographic areas, and that forest inventories are useful sources of data provided that reasonably good estimates of soil attributes and root distribution are available. Our approach coupled with recent improvements in forest survey technologies may allow obtaining spatially continuous and precise assessments of drought stress. Further efforts are needed to calibrate drought-related demographic processes before water balance and drought stress estimates can be fully used for the accurate prediction of drought impacts. © 2015 Elsevier B.V.

Read more

Urban plant physiology: Adaptation-mitigation strategies under permanent stress

Calfapietra C., Penuelas J., Niinemets T. (2015) Urban plant physiology: Adaptation-mitigation strategies under permanent stress. Trends in Plant Science. 20: 72-75.
Link
Doi: 10.1016/j.tplants.2014.11.001

Abstract:

Urban environments that are stressful for plant function and growth will become increasingly widespread in future. In this opinion article, we define the concept of 'urban plant physiology', which focuses on plant responses and long term adaptations to urban conditions and on the capacity of urban vegetation to mitigate environmental hazards in urbanized settings such as air and soil pollution. Use of appropriate control treatments would allow for studies in urban environments to be comparable to expensive manipulative experiments. In this opinion article, we propose to couple two approaches, based either on environmental gradients or manipulated gradients, to develop the concept of urban plant physiology for assessing how single or multiple environmental factors affect the key environmental services provided by urban forests. © 2014 Elsevier Ltd.

Read more

Biomass production efficiency controlled by management in temperate and boreal ecosystems

Campioli M., Vicca S., Luyssaert S., Bilcke J., Ceschia E., Chapin Iii F.S., Ciais P., Fernández-Martínez M., Malhi Y., Obersteiner M., Olefeldt D., Papale D., Piao S.L., Peñuelas J., Sullivan P.F., Wang X., Zenone T., Janssens I.A. (2015) Biomass production efficiency controlled by management in temperate and boreal ecosystems. Nature Geoscience. 8: 843-846.
Link
Doi: 10.1038/ngeo2553

Abstract:

Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass. © 2015 Macmillan Publishers Limited.

Read more

First-passage times in multiscale random walks: The impact of movement scales on search efficiency

Campos D., Bartumeus F., Raposo E.P., Méndez V. (2015) First-passage times in multiscale random walks: The impact of movement scales on search efficiency. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 92: 0-0.
Link
Doi: 10.1103/PhysRevE.92.052702

Abstract:

An efficient searcher needs to balance properly the trade-off between the exploration of new spatial areas and the exploitation of nearby resources, an idea which is at the core of scale-free Lévy search strategies. Here we study multiscale random walks as an approximation to the scale-free case and derive the exact expressions for their mean-first-passage times in a one-dimensional finite domain. This allows us to provide a complete analytical description of the dynamics driving the situation in which both nearby and faraway targets are available to the searcher, so the exploration-exploitation trade-off does not have a trivial solution. For this situation, we prove that the combination of only two movement scales is able to outperform both ballistic and Lévy strategies. This two-scale strategy involves an optimal discrimination between the nearby and faraway targets which is only possible by adjusting the range of values of the two movement scales to the typical distances between encounters. So, this optimization necessarily requires some prior information (albeit crude) about target distances or distributions. Furthermore, we found that the incorporation of additional (three, four, ...) movement scales and its adjustment to target distances does not improve further the search efficiency. This allows us to claim that optimal random search strategies arise through the informed combination of only two walk scales (related to the exploitative and the explorative scales, respectively), expanding on the well-known result that optimal strategies in strictly uninformed scenarios are achieved through Lévy paths (or, equivalently, through a hierarchical combination of multiple scales). © 2015 American Physical Society.

Read more

Pages