ELISA for detection of variant rabbit haemorrhagic disease virus RHDV2 antigen in liver extracts

Dalton, K.P., Podadera, A., Granda, V., Nicieza, I., del Llano, D., González, R., de los Toyos, J.R., García Ocaña, M., Vázquez, F., Martín Alonso, J.M., Prieto, J.M., Parra, F., Casais, R. (2018) ELISA for detection of variant rabbit haemorrhagic disease virus RHDV2 antigen in liver extracts. Journal of Virological Methods. 251: 38-42.
Link
Doi: 10.1016/j.jviromet.2017.09.019

Abstract:

Sobre el intercambio de datos de vegetación: El estándar ‘Veg-X’ y el paquete de R ‘VegX’

De Cáceres M. (2018) Sobre el intercambio de datos de vegetación: El estándar ‘Veg-X’ y el paquete de R ‘VegX’. Ecosistemas. 27: 128-129.
Link
Doi: 10.7818/ECOS.1570

Abstract:

[No abstract available]

Read more

Global overview of plot-based vegetation classification approaches

De Cáceres M., Franklin S.B., Hunter J.T., Landucci F., Dengler J., Roberts D.W. (2018) Global overview of plot-based vegetation classification approaches. Phytocoenologia. 48: 101-112.
Link
Doi: 10.1127/phyto/2018/0256

Abstract:

While classification of vegetation can be conducted in many ways, international homogenization of procedures and typologies is desirable for human societies that are highly connected in terms of sharing biodiversity information. This Special Issue of Phytocoenologia includes 12 papers that document several of the plot-based classification approaches currently used throughout the world. The issue includes approaches from five continents, but noticeable gaps are South America, middle-eastern countries, northern Africa and southeastern Asia. We include in this editorial a brief synthesis of the papers included in the Special Issue, with respect to (1) the amount of vegetation-plot data and characteristics of the classification systems developed in different areas and (2) the concepts and procedures of classification approaches. One of the most important common attributes among the classification approaches is the need to define vegetation units at a low level of abstraction. 'Association' (and perhaps 'alliance' too) may be a classification level for which international homogenization of procedures would be most easy to achieve, perhaps establishing different consistent classification sections depending on ecological conditions. Several papers in this issue demonstrate that multiple approaches may coexist for higher levels, as long as they abstract vegetation from the same low level units by focusing on a specific set of concepts and defined from the perspective of applications. © 2017 Gebrüder Borntraeger, 70176 Stuttgart, Germany.

Read more

BioTIME: A database of biodiversity time series for the Anthropocene

Dornelas M., Antão L.H., Moyes F., Bates A.E., Magurran A.E., Adam D., Akhmetzhanova A.A., Appeltans W., Arcos J.M., Arnold H., Ayyappan N., Badihi G., Baird A.H., Barbosa M., Barreto T.E., Bässler C., Bellgrove A., Belmaker J., Benedetti-Cecchi L., Bett B.J., Bjorkman A.D., Błażewicz M., Blowes S.A., Bloch C.P., Bonebrake T.C., Boyd S., Bradford M., Brooks A.J., Brown J.H., Bruelheide H., Budy P., Carvalho F., Castañeda-Moya E., Chen C.A., Chamblee J.F., Chase T.J., Siegwart Collier L., Collinge S.K., Condit R., Cooper E.J., Cornelissen J.H.C., Cotano U., Kyle Crow S., Damasceno G., Davies C.H., Davis R.A., Day F.P., Degraer S., Doherty T.S., Dunn T.E., Durigan G., Duffy J.E., Edelist D., Edgar G.J., Elahi R., Elmendorf S.C., Enemar A., Ernest S.K.M., Escribano R., Estiarte M., Evans B.S., Fan T.-Y., Turini Farah F., Loureiro Fernandes L., Farneda F.Z., Fidelis A., Fitt R., Fosaa A.M., Daher Correa Franco G.A., Frank G.E., Fraser W.R., García H., Cazzolla Gatti R., Givan O., Gorgone-Barbosa E., Gould W.A., Gries C., Grossman G.D., Gutierréz J.R., Hale S., Harmon M.E., Harte J., Haskins G., Henshaw D.L., Hermanutz L., Hidalgo P., Higuchi P., Hoey A., Van Hoey G., Hofgaard A., Holeck K., Hollister R.D., Holmes R., Hoogenboom M., Hsieh C.-H., Hubbell S.P., Huettmann F., Huffard C.L., Hurlbert A.H., Macedo Ivanauskas N., Janík D., Jandt U., Jażdżewska A., Johannessen T., Johnstone J., Jones J., Jones F.A.M., Kang J., Kartawijaya T., Keeley E.C., Kelt D.A., Kinnear R., Klanderud K., Knutsen H., Koenig C.C., Kortz A.R., Král K., Kuhnz L.A., Kuo C.-Y., Kushner D.J., Laguionie-Marchais C., Lancaster L.T., Min Lee C., Lefcheck J.S., Lévesque E., Lightfoot D., Lloret F., Lloyd J.D., López-Baucells A., Louzao M., Madin J.S., Magnússon B., Malamud S., Matthews I., McFarland K.P., McGill B., McKnight D., McLarney W.O., Meador J., Meserve P.L., Metcalfe D.J., Meyer C.F.J., Michelsen A., Milchakova N., Moens T., Moland E., Moore J., Mathias Moreira C., Müller J., Murphy G., Myers-Smith I.H., Myster R.W., Naumov A., Neat F., Nelson J.A., Paul Nelson M., Newton S.F., Norden N., Oliver J.C., Olsen E.M., Onipchenko V.G., Pabis K., Pabst R.J., Paquette A., Pardede S., Paterson D.M., Pélissier R., Peñuelas J., Pérez-Matus A., Pizarro O., Pomati F., Post E., Prins H.H.T., Priscu J.C., Provoost P., Prudic K.L., Pulliainen E., Ramesh B.R., Mendivil Ramos O., Rassweiler A., Rebelo J.E., Reed D.C., Reich P.B., Remillard S.M., Richardson A.J., Richardson J.P., van Rijn I., Rocha R., Rivera-Monroy V.H., Rixen C., Robinson K.P., Ribeiro Rodrigues R., de Cerqueira Rossa-Feres D., Rudstam L., Ruhl H., Ruz C.S., Sampaio E.M., Rybicki N., Rypel A., Sal S., Salgado B., Santos F.A.M., Savassi-Coutinho A.P., Scanga S., Schmidt J., Schooley R., Setiawan F., Shao K.-T., Shaver G.R., Sherman S., Sherry T.W., Siciński J., Sievers C., da Silva A.C., Rodrigues da Silva F., Silveira F.L., Slingsby J., Smart T., Snell S.J., Soudzilovskaia N.A., Souza G.B.G., Maluf Souza F., Castro Souza V., Stallings C.D., Stanforth R., Stanley E.H., Mauro Sterza J., Stevens M., Stuart-Smith R., Rondon Suarez Y., Supp S., Yoshio Tamashiro J., Tarigan S., Thiede G.P., Thorn S., Tolvanen A., Teresa Zugliani Toniato M., Totland Ø., Twilley R.R., Vaitkus G., Valdivia N., Vallejo M.I., Valone T.J., Van Colen C., Vanaverbeke J., Venturoli F., Verheye H.M., Vianna M., Vieira R.P., Vrška T., Quang Vu C., Van Vu L., Waide R.B., Waldock C., Watts D., Webb S., Wesołowski T., White E.P., Widdicombe C.E., Wilgers D., Williams R., Williams S.B., Williamson M., Willig M.R., Willis T.J., Wipf S., Woods K.D., Woehler E.J., Zawada K., Zettler M.L. (2018) BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography. 27: 760-786.
Link
Doi: 10.1111/geb.12729

Abstract:

Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2). Time period and grain: BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. Software format:.csv and.SQL. © 2018 The Authors. Global Ecology and Biogeography Published by John Wiley & Sons Ltd

Read more

Synoptic weather conditions and changing fire regimes in a Mediterranean environment

Duane, A., Brotons, L. (2018) Synoptic weather conditions and changing fire regimes in a Mediterranean environment. Agricultural and Forest Meteorology. 253-254: 190-202.
Link
Doi: 10.1016/j.agrformet.2018.02.014

Abstract:

Distribution of pines in the Iberian Peninsula agrees with species differences in foliage frost tolerance, not with vulnerability to freezing-induced xylem embolism

Fernández-Pérez L., Villar-Salvador P., Martínez-Vilalta J., Toca A., Zavala M.A. (2018) Distribution of pines in the Iberian Peninsula agrees with species differences in foliage frost tolerance, not with vulnerability to freezing-induced xylem embolism. Tree Physiology. 38: 507-516.
Link
Doi: 10.1093/treephys/tpx171

Abstract:

Drought and frosts are major determinants of plant functioning and distribution. Both stresses can cause xylem embolism and foliage damage. The objective of this study was to analyse if the distribution of six common pine species along latitudinal and altitudinal gradients in Europe is related to their interspecific differences in frost tolerance and to the physiological mechanisms underlying species-specific frost tolerance. We also evaluate if frost tolerance depends on plant water status. We studied survival to a range of freezing temperatures in 2-year-old plants and assessed the percentage loss of hydraulic conductivity (PLC) due xylem embolism formation and foliage damage determined by needle electrolyte leakage (EL) after a single frost cycle to −15 °C and over a range of predawn water potential (ψpd) values. Species experiencing cold winters in their range (Pinus nigra J.F. Arnold, Pinus sylvestris L. and Pinus uncinata Raymond ex A. DC.) had the highest frost survival rates and lowest needle EL and soluble sugar (SS) concentration. In contrast, the pines inhabiting mild or cool winter locations (especially Pinus halepensis Mill. and Pinus pinea L. and, to a lesser extent, Pinus pinaster Ait.) had the lowest frost survival and highest needle EL and SS values. Freezing-induced PLC was very low and differences among species were not related to frost damage. Reduction in ψpd decreased leaf frost damage in P. pinea and P. sylvestris, increased it in P. uncinata and had a neutral effect on the rest of the species. This study demonstrates that freezing temperatures are a major environmental driver for pine distribution and suggests that interspecific differences in leaf frost sensitivity rather than vulnerability to freezing-induced embolism or SS explain pine juvenile frost survival. © The Author(s) 2018. Published by Oxford University Press. All rights reserved.

Read more

A MODIS photochemical reflectance index (PRI) as an estimator of isoprene emissions in a temperate deciduous forest

Filella I., Zhang C., Seco R., Potosnak M., Guenther A., Karl T., Gamon J., Pallardy S., Gu L., Kim S., Balzarolo M., Fernandez-Martinez M., Penuelas J. (2018) A MODIS photochemical reflectance index (PRI) as an estimator of isoprene emissions in a temperate deciduous forest. Remote Sensing. 10: 0-0.
Link
Doi: 10.3390/rs10040557

Abstract:

The quantification of isoprene and monoterpene emissions at the ecosystem level with available models and field measurements is not entirely satisfactory. Remote-sensing techniques can extend the spatial and temporal assessment of isoprenoid fluxes. Detecting the exchange of biogenic volatile organic compounds (BVOCs) using these techniques is, however, a very challenging goal. Recent evidence suggests that a simple remotely sensed index, the photochemical reflectance index (PRI), which is indicative of light-use efficiency, relative pigment levels and excess reducing power, is a good indirect estimator of foliar isoprenoid emissions. We tested the ability of PRI to assess isoprenoid fluxes in a temperate deciduous forest in central USA throughout the entire growing season and under moderate and extreme drought conditions. We compared PRI time series calculated with MODIS bands to isoprene emissions measured with eddy covariance. MODIS PRI was correlated with isoprene emissions for most of the season, until emissions peaked. MODIS PRI was also able to detect the timing of the annual peak of emissions, even when it was advanced in response to drought conditions. PRI is thus a promising index to estimate isoprene emissions when it is complemented by information on potential emission. It may also be used to further improve models of isoprene emission under drought and other stress conditions. Direct estimation of isoprene emission by PRI is, however, limited, because PRI estimates LUE, and the relationship between LUE and isoprene emissions can be modified by severe stress conditions. © 2018 by the authors.

Read more

Yearly fluctuations of flower landscape in a Mediterranean scrubland: Consequences for floral resource availability

Flo, V., Bosch, J., Arnan, X., Primante, C., Martín González, A.M., Barril-Graells, H., Rodrigo, A. (2018) Yearly fluctuations of flower landscape in a Mediterranean scrubland: Consequences for floral resource availability. PLoS ONE. 13: 0-0.
Link
Doi: 10.1371/journal.pone.0191268

Abstract:

Estimating Carbon Avoided from the Implementation of Reduced-Impact Logging in Sabah, Malaysia

Galante M.V., Pinard M.A., Mencuccini M. (2018) Estimating Carbon Avoided from the Implementation of Reduced-Impact Logging in Sabah, Malaysia. International Forestry Review. 20: 58-78.
Link
Doi: 10.1505/146554818822824192

Abstract:

The objective of this study was to investigate the design and application of a carbon baseline for commercial timber harvest activities involving conventional timber harvest activities (CNV), relative to reduced-impact logging (RIL) in Sabah, Malaysia. As only RIL is eligible to be practiced in production forests, a baseline of CNV was estimated from the literature. The principle of net present value was applied to the post-harvest accumulation of carbon stocks after RIL to model a conservative 'crediting' baseline. Two areas representing opposite ends of a range of anthropogenic disturbance were sampled, with an old growth lower montane forest, and a lowland severely logged-over dipterocarp forest investigated before-, and two- and three-years after harvest, respectively. Areas impacted by CNV were estimated to contain 12-39% of pre-harvest carbon stock, relative to 57-63% under RIL and estimated to accumulate carbon in the range of 0.68-1.25 tC ha-1 yr1, averaging 14-55 years for recovery; in-line with body of knowledge. While the main limitation was our inability measure CNV directly, a balance of understanding is required for the development of a 'best estimate' using the literature. © 2018 Commonwealth Forestry Association. All rights reserved.

Read more

The spatial scaling of species interaction networks

Galiana N., Lurgi M., Claramunt-López B., Fortin M.-J., Leroux S., Cazelles K., Gravel D., Montoya J.M. (2018) The spatial scaling of species interaction networks. Nature Ecology and Evolution. 2: 782-790.
Link
Doi: 10.1038/s41559-018-0517-3

Abstract:

Species-area relationships (SARs) are pivotal to understand the distribution of biodiversity across spatial scales. We know little, however, about how the network of biotic interactions in which biodiversity is embedded changes with spatial extent. Here we develop a new theoretical framework that enables us to explore how different assembly mechanisms and theoretical models affect multiple properties of ecological networks across space. We present a number of testable predictions on network-area relationships (NARs) for multi-trophic communities. Network structure changes as area increases because of the existence of different SARs across trophic levels, the preferential selection of generalist species at small spatial extents and the effect of dispersal limitation promoting beta-diversity. Developing an understanding of NARs will complement the growing body of knowledge on SARs with potential applications in conservation ecology. Specifically, combined with further empirical evidence, NARs can generate predictions of potential effects on ecological communities of habitat loss and fragmentation in a changing world. © 2018 The Author(s).

Read more

Pages