Potassium: A neglected nutrient in global change

Sardans J., Penuelas J. (2015) Potassium: A neglected nutrient in global change. Global Ecology and Biogeography. 24: 261-275.
Link
Doi: 10.1111/geb.12259

Abstract:

Aim: Potassium (K) is the second most abundant nutrient in plant photosynthetic tissues after nitrogen (N). Thousands of physiological and metabolic studies in recent decades have established the fundamental role of K in plant function, especially in water-use efficiency and economy, and yet macroecological studies have mostly overlooked this nutrient. Methods: We have reviewed available studies on the content, stoichiometry and roles of K in the soil-plant system and in terrestrial ecosystems. We have also reviewed the impacts of global change drivers on K content, stoichiometry and roles. Conclusions: The current literature indicates that K, at a global level, is as limiting as N and phosphorus (P) for plant productivity in terrestrial ecosystems. Some degree of K limitation has been seen in up to 70% of all studied terrestrial ecosystems. However, in some areas atmospheric K deposition from human activities is greater than that from natural sources. We are far from understanding the K fluxes between the atmosphere and land, and the role of anthropogenic activities in these fluxes. The increasing aridity expected in wide areas of the world makes K more critical through its role in water-use efficiency. N deposition exerts a strong impact on the ecosystem K cycle, decreasing K availability and increasing K limitation. Plant invasive success is enhanced by higher soil K availability, especially in environments without strong abiotic stresses. The impacts of other drivers of global change, such as increasing atmospheric CO2 or changes in land use, remain to be elucidated. Current models of the responses of ecosystems and carbon storage to projected global climatic and atmospheric changes are now starting to consider N and P, but they should also consider K, mostly in arid and semi-arid ecosystems. © 2015 John Wiley & Sons Ltd.

Read more

Shifts in the elemental composition of plants during a very severe drought

Urbina I., Sardans J., Beierkuhnlein C., Jentsch A., Backhaus S., Grant K., Kreyling J., Penuelas J. (2015) Shifts in the elemental composition of plants during a very severe drought. Environmental and Experimental Botany. 111: 63-73.
Link
Doi: 10.1016/j.envexpbot.2014.10.005

Abstract:

Diverse plant functions (e.g., growth, storage, defense and anti-stress mechanisms) use elements disproportionally. We hypothesized that plants growing under different abiotic and biotic conditions would shift their elemental compositions in response to a very severe drought. We tested this hypothesis by investigating the changes in foliar stoichiometry and species composition from a very severe drought. We also tested the effects of previous droughts (acclimation) on this response. Different species growing in the same community responded more similarly to a very severe drought than did individual species growing in different communities. The stoichiometric shifts were thus more community-dependent than species-dependent. The results also suggested that plants grown in monoculture were less stoichiometrically plastic during the drought than plants grown in a more diverse community. Previous exposure to long-term drought treatments in the same communities did not significantly affect the stoichiometric shifts during the new drought. Differential use of resources may have been responsible for these responses. Monocultured plants, which used the same resources in similar proportions, had more difficulty avoiding direct competition when the resources became scarcer. Moreover, each species tested had a particular elemental composition in all communities and climatic treatments. The differences in foliar elemental compositions were largest between plant functional groups (shrubs and grasses) and smallest among species within the same functional group. Global principal components analyses (PCAs) identified a general tendency for all species, independently of the community in which they grew, toward lower concentrations of K, N, P, Mg and S, and to higher concentrations of C and Fe as the drought advanced. This study has demonstrated the utility of analyses of differences and shifts in plant elemental composition for understanding the processes underlying the responses of plants to changes in biotic and abiotic environmental conditions. © 2014.

Read more

Rice straw incorporation affects global warming potential differently in early vs. late cropping seasons in Southeastern China

Wang W., Lai D.Y.F., Sardans J., Wang C., Datta A., Pan T., Zeng C., Bartrons M., Penuelas J. (2015) Rice straw incorporation affects global warming potential differently in early vs. late cropping seasons in Southeastern China. Field Crops Research. 181: 42-51.
Link
Doi: 10.1016/j.fcr.2015.07.007

Abstract:

Paddy fields are a major global anthropogenic source of methane (CH4) and nitrous oxide (N2O), which are very potent greenhouse gases. China has the second largest area under rice cultivation, so developing valid and reliable methods for reducing emissions of greenhouse gases while sustaining crop productivity in paddy fields is of paramount importance. We examined the effects of applying straw, a residual product of rice cultivation containing high amounts of carbon and nutrients, to rice crops during both an early crop season (5 April - 25 July 2012) and a late crop season (1 August - 6 November 2012) on CH4 and N2O emissions in a subtropical paddy field in southeastern China. CH4 fluxes had two seasonal peaks, on 5 May and 28 June, in the early crop but only one peak, on 13 August, in the late crop, which could be attributed to the lower temperatures after the final tillering stage in the late crop. Straw application significantly increased mean CH4 cumulative production (gm-2) relative to the control in the late crop (37.3 vs. 8.34mgm-2, P 0.05). The application of straw significantly increased N2O cumulative production relative to the control in the late crop (75.9 vs. 43.4μgm-2h-1) but decreased N2O cumulative production by over 43% in the early crop (15.60 vs. 27.27μgm-2h-1) (P

Read more

Effects of steel slag application on greenhouse gas emissions and crop yield over multiple growing seasons in a subtropical paddy field in China

Wang W., Sardans J., Lai D.Y.F., Wang C., Zeng C., Tong C., Liang Y., Penuelas J. (2015) Effects of steel slag application on greenhouse gas emissions and crop yield over multiple growing seasons in a subtropical paddy field in China. Field Crops Research. 171: 146-156.
Link
Doi: 10.1016/j.fcr.2014.10.014

Abstract:

Asia is responsible for over 90% of the world's rice production and hence plays a key role in safeguarding food security. With China being one of the major global producers and consumers of rice, achieving a sustainable balance in maximizing crop productivity and minimizing greenhouse gas emissions from paddy fields in this country becomes increasingly important. This study examined the effects of applying steel slag, a residual product derived from the steel industry, on crop yield and CH4 and N2O emissions over multiple growing seasons in a Chinese subtropical paddy field. Average CH4 emission was considerably higher during the periods of rice crop growth compared to that during the periods of fallowing and vegetable crop growth, regardless of the amount of steel slag applied. When compared to the controls, significantly lower mean emissions of CH4 (1.03 vs. 2.34mgm-2h-1) and N2O (0.41 vs. 32.43μgm-2h-1) were obtained in plots with slag addition at a rate of 8Mgha-1 over the study period. The application of slag at 8Mgha-1 increased crop yields by 4.2 and 9.1% for early and late rice crops, respectively, probably due to the higher availability of inorganic nutrients such as silicates and calcium from the slag. Slag addition had no significant effect on the concentrations of heavy metals in either the soil or the rice grains, although a slight increase in the levels of manganese and cobalt in the soil and a decrease in the levels of manganese and zinc in the rice grains were observed. Our results demonstrate the potential of steel slag as a soil amendment in enhancing crop yield and reducing greenhouse gas emissions in subtropical paddy fields in China, while posing no adverse short-term impacts on the concentrations of heavy metals in the soil or the rice grains. However, long-term implications of this management practice and the cost/benefit remain unknown, so further studies to assess the suitability at large scale are warranted. © 2014 Elsevier B.V.

Read more

Agricultural land use decouples soil nutrient cycles in a subtropical riparian wetland in China

Wang W., Wang C., Sardans J., Min Q., Zeng C., Tong C., Penuelas J. (2015) Agricultural land use decouples soil nutrient cycles in a subtropical riparian wetland in China. Catena. 133: 171-178.
Link
Doi: 10.1016/j.catena.2015.05.003

Abstract:

We examined the impact of human changes in land use on the concentrations and stoichiometric relationships among soil carbon (C), nitrogen (N), phosphorus (P) and potassium (K) in a Phragmites australis riparian wetland (Minjiang River estuary, China). We compared a natural (unaltered) wetland with five altered land uses: intertidal mudflat culture and vegetable, flower, fruit and rice cultivations. All these land uses decreased C, N and K soil concentrations relative to those in the P. australis wetland. The close relationship between total soil C and N concentrations, under all land uses, suggested that N was the most limiting nutrient in these wetlands. The lower N concentrations, despite the use of N fertilizers, indicated the difficulty of avoiding N limitation in the agricultural land. Croplands, except rice cultivation, had lower soil N:P ratios than the original P. australis wetland, consistent with the tendency of favoring species adapted to high rates of growth (low N:P ratio). The release of soil C was less and the soil C:N and C:P ratios higher in the natural P. australis riparian wetland than in the croplands, whereas C storage was more similar. The levels of soil C storage were generally opposite to those of C release, indicating that C release by respiration was the most important factor controlling C storage. Cropland soil management promotes faster nutrient and C cycles and changes in soil nutrient stoichiometry. These impacts can further hinder the regeneration of natural vegetation by nutrient imbalances and increase C-cycling and C emissions. © 2015 Elsevier B.V.

Read more

Flood regime affects soil stoichiometry and the distribution of the invasive plants in subtropical estuarine wetlands in China

Wang W., Wang C., Sardans J., Tong C., Jia R., Zeng C., Penuelas J. (2015) Flood regime affects soil stoichiometry and the distribution of the invasive plants in subtropical estuarine wetlands in China. Catena. 128: 144-154.
Link
Doi: 10.1016/j.catena.2015.01.017

Abstract:

Projections of climate change impacts over the coming decades suggest that rising sea levels will flood coastal wetlands, moving the range of wetlands inland from the current coastline. The intensity of flooding in wetland areas will thus increase, with corresponding impacts on soil properties and coastal ecosystems. We studied the impacts of two levels of water inundation on the concentration and stoichiometry of soil carbon, nitrogen, phosphorus and sulfur in areas dominated by the native C3 species Scirpus triqueter L., the native C4 species Cyperus malaccensis var. brevifolius Boecklr. and the invasive Gramineae C3 species Phragmites australis (Cav.) Trin. ex Steud in the Shanyutan wetland areas of the Minjiang River estuary in China. Comparison of the communities dominated by these three species in high- and low-water flood habitats showed that flooding enhanced anaerobiosis and salinity and altered the carbon and nitrogen plant-soil cycles. Higher flooding favored the invasive species more than the two native species. The invasive P. australis accumulated more carbon (65% increase in aboveground biomass), and took up more nitrogen under high flooding than did C. malaccensis and S. triqueter. The more conservative use of soil resources, particularly the limiting nutrient N, appeared to underlie the higher capacity of the invasive species to tolerate higher flooding intensity. Increases in flooding may thus enhance the success and expansion of the invasive P. australis to the detriment of the native plant species in these Chinese wetlands. © 2015 Elsevier B.V.

Read more

Impact of Plant Invasion and Increasing Floods on Total Soil Phosphorus and its Fractions in the Minjiang River Estuarine Wetlands, China

Wang W.-Q., Sardans J., Zeng C.-S., Tong C., Wang C., Peñuelas J. (2015) Impact of Plant Invasion and Increasing Floods on Total Soil Phosphorus and its Fractions in the Minjiang River Estuarine Wetlands, China. Wetlands. : 0-0.
Link
Doi: 10.1007/s13157-015-0712-9

Abstract:

Plant invasion and increased flooding intensity projected by climate change models can change the soil capacity of marine wetland to store P. This is a key question to the nutrient balances and eutrophication processes of coastal areas, especially in China coastal area that is receiving the freshwaters of a country in fast economical developing process. We studied the impact of changes in flooding intensity and plant invasion on total soil-P concentrations in the Minjiang River estuarine wetland. Flooding had a weak positive effect on soil P-fractions concentrations, but this effect was largely counteracted by the negative effect of salinity. Soil clay concentration and pH, both of which were related more with species community composition than with flooding intensity, were directly related to the P-fraction concentrations. The replacement of the native mangrove community by the invasive plant Phragmites australis was related to a decrease in the soil capacity to store P. A suitable management to maintain this wetland area in optimum conditions to act as a natural eutrophication buffer should tend to favor mangrove communities in the new areas that reach more than 220 days y-1 of flooding, and a combination of the three tall-grasses communities below this level of flooding. © 2015 Society of Wetland Scientists

Read more

Plant invasive success associated with higher N-use efficiency and stoichiometric shifts in the soil–plant system in the Minjiang River tidal estuarine wetlands of China

Wang W.-Q., Wang C., Sardans J., Zeng C.-S., Tong C., Penuelas J. (2015) Plant invasive success associated with higher N-use efficiency and stoichiometric shifts in the soil–plant system in the Minjiang River tidal estuarine wetlands of China. Wetlands Ecology and Management. : 0-0.
Link
Doi: 10.1007/s11273-015-9425-3

Abstract:

The tidal estuarine wetlands of China are rich in plant diversity, but several human-driven processes, such as species invasion, can affect the biogeochemical cycles of these ecosystems, and by changing soil conditions can inhibit the regeneration of native vegetation. We seasonally analyzed the carbon (C), nitrogen (N) and phosphorus (P) concentrations in soils and in leaves, stems and roots of the invasive species Spartina alterniflora and of the native species Cyperus malaccensis var. brevifolius Boeckeler. This latter species was analyzed both in natural non-invaded stands and in stands that had been invaded by Spartina but from which it had been removed and replaced by Cyperus. The aim was to investigate the effect of plant invasion, subsequent removal and replanting with a native species on C, N and P stoichiometry of the plant–soil system in the tidal wetlands of the Minjiang River. C and N concentrations averaged across seasons did not differ significantly among the plant species. P concentration was lower in the stems of Spartina than in the stems of the native species Cyperus but was not significantly different in the roots of the two species. The soil C and N concentrations were higher in the Spartina stand than in the Cyperus stand, whereas the soil P concentrations were not significantly different. The invasive species had a higher N-resorption capacity, N:P ratios in stem and roots, biomass, absolute growth and biomass N and had a lower relative growth rate and litter production than the native species. After the removal of the invasive plants, the regenerating native plants have a higher capacity to resorb N and lower relative growth rates. All these traits show that a conservative strategy and a high N-use efficiency and internal plant control of the N in the ecosystem underlie the invasive success of Spartina in this N-limited wetland. Relative growth rate was associated with lower plant N:P ratios, whereas absolute growth rate was associated with higher nutrient-use efficiency and lower C and N turnover and storage capacities in the biomass. Changes in soil properties produced by the establishment of an invasive plant can condition the later regeneration of native plants. © 2015 Springer Science+Business Media Dordrecht

Read more

Ecological stoichiometry of C, N, and P of invasive Phragmites australis and native Cyperus malaccensis species in the Minjiang River tidal estuarine wetlands of China

Wang W.Q., Sardans J., Wang C., Zeng C.S., Tong C., Asensio D., Penuelas J. (2015) Ecological stoichiometry of C, N, and P of invasive Phragmites australis and native Cyperus malaccensis species in the Minjiang River tidal estuarine wetlands of China. Plant Ecology. : 0-0.
Link
Doi: 10.1007/s11258-015-0469-5

Abstract:

Tidal estuarine wetlands of China are rich in plant diversity, but several global change drivers, such as species invasion, are currently affecting the biogeochemical cycles of these ecosystems. We seasonally analyzed the carbon (C), nitrogen (N), and phosphorus (P) concentrations in litters and soils and in leaves, stems, and roots of the C3 invasive species Phragmites australis (Cav.) Trin. ex Steud. and of the C4 native species Cyperus malaccensis var. brevifolius Boeckeler to investigate the effect of C3 plant invasion on C, N, and P stoichiometry in the C4 plant-dominated tidal wetlands of the Minjiang River. When averaged across seasons, the invasive species P. australis had higher N concentrations and lower P concentrations in leaves than the native species C. malaccensis. N and P concentrations were lower in litter (stem and leaf), whereas C concentrations in leaf litter were higher in P. australis than in C. malaccensis. The C, N, and P concentrations of the soil also did not differ, but plants had a lower C:N and much higher N:P ratios than soils. Root C:P and N:P ratios were lower in the growing season both in the invasive and the native species. The leaf C:N, C:P and N:P ratios peaked in summer. The invasive species had lower C:N ratio in leaves and roots, and higher N:P ratios in all biomass organs and litter than the native species, an effect related with the higher N-resorption capacity of the invasive species. Interspecific differences in C:N, C:P, and N:P ratios may likely reflect the differences in plant morphology, nutrient-use efficiency, and photosynthetic capacity between the C3 (P. australis) and C4 (C. malaccensis) plants. Our results generally suggested that the success of P. australis in these wetlands was related to its slow growth and higher resorption capacity of N and P. This implies a more conservative use of limited nutrients, particularly N, by P. australis, and to higher N concentration in its biomass thus potentially contributing to its invasiveness in these estuarine wetlands. © 2015 Springer Science+Business Media Dordrecht

Read more

The application of ecological stoichiometry to plant-microbial-soil organic matter transformations

Zechmeister-Boltenstern S., Keiblinger K.M., Mooshammer M., Peñuelas J., Richter A., Sardans J., Wanek W. (2015) The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecological Monographs. 85: 133-155.
Link
Doi: 10.1890/14-0777.1

Abstract:

Elemental stoichiometry constitutes an inherent link between biogeochemistry and the structure and processes within food webs, and thus is at the core of ecosystem functioning. Stoichiometry allows for spanning different levels of biological organization, from cellular metabolism to ecosystem structure and nutrient cycling, and is therefore particularly useful for establishing links between different ecosystem compartments. We review elemental carbon : nitrogen : phosphorus (C:N:P) ratios in terrestrial ecosystems (from vegetation, leaf litter, woody debris, and dead roots, to soil microbes and organic matter). While the stoichiometry of the plant, litter, and soil compartments of ecosystems is well understood, heterotrophic microbial communities, which dominate the soil food web and drive nutrient cycling, have received increasing interest in recent years. This review highlights the effects of resource stoichiometry on soil microorganisms and decomposition, specifically on the structure and function of heterotrophic microbial communities and suggests several general patterns. First, latitudinal gradients of soil and litter stoichiometry are reflected in microbial community structure and function. Second, resource stoichiometry may cause changes in microbial interactions and community dynamics that lead to feedbacks in nutrient availability. Third, global change alters the C:N, C:P, and N:P ratios of primary producers, with repercussions for microbial decomposer communities and critical ecosystem services such as soil fertility. We argue that ecological stoichiometry provides a framework to analyze and predict such global change effects at various scales. © 2015 by the Ecological Society of America.

Read more

Pages