On the influence of water conductivity, pH and climate on bryophyte assemblages in Catalan semi-natural springs

Bes M., Corbera J., Sayol F., Bagaria G., Jover M., Preece C., Viza A., Sabater F., Fernández-Martínez M. (2018) On the influence of water conductivity, pH and climate on bryophyte assemblages in Catalan semi-natural springs. Journal of Bryology. : 1-10.
Link
Doi: 10.1080/03736687.2018.1446484

Abstract:

Bryophytes are some of the most sensitive biological indicators of environmental change. Springs have a significant presence of bryophytes and so are ideal habitats for studying their relationship with the environment. We tested whether bryophyte assemblages can be explained with macro-, meso- and micro-ecological variables (i.e. seasonal climate, altitude, water pH and conductivity) sampling bryophytes from 198 semi-natural springs distributed along montane regions in the north-eastern Iberian Peninsula. We tested the influence of environmental variables on bryophyte assemblages in springs using sparse Partial Least Squares. Our results show that variability in bryophyte assemblages is explained by seasonal climate (temperature and precipitation from winter, spring, summer and autumn and temperature and precipitation seasonality), altitude and water conductivity. The results obtained by the present study will be useful for predicting bryophyte diversity in springs using simple and easy to obtain variables such as climate, water pH and conductivity. © British Bryological Society 2018

Read more

Exploring the links between social metabolism and biodiversity distribution across landscape gradients: A regional-scale contribution to the land-sharing versus land-sparing debate

Marull, J., Tello, E., Bagaria, G., Font, X., Cattaneo, C., Pino, J. (2018) Exploring the links between social metabolism and biodiversity distribution across landscape gradients: A regional-scale contribution to the land-sharing versus land-sparing debate. Science of the Total Environment. 619-620: 1272-1285.
Link
Doi: 10.1016/j.scitotenv.2017.11.196

Abstract:

Influence of clay licks on the diversity and structure of an Amazonian forest

Molina E., Espelta J.M., Pino J., Bagaria G., Armenteras D. (2018) Influence of clay licks on the diversity and structure of an Amazonian forest. Biotropica. 50: 740-749.
Link
Doi: 10.1111/btp.12568

Abstract:

The spatial heterogeneity of resource availability is a major driver of biodiversity patterns. Some environmental conditions and resources are characterized by large-scale patterns of variation within the landscape. Clumped local discontinuities or discrete elements also increase spatial heterogeneity, promoting local ‘biodiversity hot spots’ by modifying habitat characteristics and promoting plant–animal interactions. Clay licks are faunal attractors owing to their role in the nutritional ecology of the user species; nevertheless, the effect of their presence on the surrounding vegetation has been poorly quantified. Here, we use data from 100 × 10 m transects and evaluate the effects of the presence of clay licks on forest diversity and structure at local and landscape scales. In clay lick areas, there was a higher abundance of certain species, which helps to homogenize species composition between localities counteracting the natural distance-decay of compositional similarity between transects without clay lick influence (controls). Compared to control sites, clay lick′s forests had higher palm densities, shorter but more variable individuals in the canopy and understory, a thinner canopy layer, and denser herbaceous and ground level covers. These differences were found along the whole length of transects in both sampled areas types. These results reveal that the presence of discrete elements (i.e., clay licks) may help to explain the compositional and structural heterogeneity of Amazonian forests influencing ecological processes such as seed dispersal and trampling. These considerations may be relevant for other biomes where clay licks are present and give weight to their inclusion in conservation initiatives in tropical forests. © 2018 The Association for Tropical Biology and Conservation

Read more