Vegetation dynamics at Raraku Lake catchment (Easter Island) during the past 34,000years

Cañellas-Boltà N., Rull V., Sáez A., Margalef O., Pla-Rabes S., Valero-Garcés B., Giralt S. (2016) Vegetation dynamics at Raraku Lake catchment (Easter Island) during the past 34,000years. Palaeogeography, Palaeoclimatology, Palaeoecology. 446: 55-69.
Link
Doi: 10.1016/j.palaeo.2016.01.019

Abstract:

Easter Island is a paradigmatic example of human impact on ecosystems. The role of climate changes in recent vegetation shifts has commonly been rejected without proper assessment. A palynological study of a long sediment core from Raraku Lake documents the vegetation dynamics for the last 34 ka and investigates their driving forces, particularly the effects of climate variability on vegetation changes. Significant relationships between pollen assemblage changes and sedimentary and geochemical proxies demonstrate the rapid response of vegetation to lake crater basin hydrology and climatic changes. The lake surroundings were occupied by an open mixed palm grove during the Last Glacial period. Poaceae and Sophora increased at the expense of palms and Triumfetta, and Coprosma practically disappeared, in response to slightly wetter and/or colder climate during the Last Glacial Maximum. Palms and Triumfetta thrived in a warmer and/or drier climate during the deglaciation. Minor vegetation changes (a slight increase in Sophora and a drop in Asteraceae and Poaceae) occurred between 13.2 and 11.8 cal. ka BP and can be related to rapid changes in the Younger Dryas chronozone. The increase in herbaceous taxa indicates a gradual shallowing of the lake and development of a mire during the Holocene, caused by sediment infilling and warmer and drier climate. Relatively rapid vegetation changes in the Holocene were caused by climate and by plant succession on the expanding mire. The rates of vegetation change observed in the mire were similar to those at the initial stages of human impact identified in a previous study. These results reveal significant vegetation changes prior to human presence, due to the interplay of climate variations (temperature and moisture), changes in lake basin form by infilling and intrinsic dynamics of plant succession. Hence, the potential contribution of these factors in vegetation shifts during the period of human presence should not be neglected. © 2016 Elsevier B.V.

Read more

The Holocene deglaciation of the Byers Peninsula (Livingston Island, Antarctica) based on the dating of lake sedimentary records

Oliva M., Antoniades D., Giralt S., Granados I., Pla-Rabes S., Toro M., Liu E.J., Sanjurjo J., Vieira G. (2016) The Holocene deglaciation of the Byers Peninsula (Livingston Island, Antarctica) based on the dating of lake sedimentary records. Geomorphology. 261: 89-102.
Link
Doi: 10.1016/j.geomorph.2016.02.029

Abstract:

The process of deglaciation in the Antarctic Peninsula region has large implications for the geomorphological and ecological dynamics of the ice-free environments. However, uncertainties still remain regarding the age of deglaciation in many coastal environments, as is the case in the South Shetland Islands. This study focuses on the Byers Peninsula, the largest ice-free area in this archipelago and the one with greatest biodiversity in Antarctica. A complete lacustrine sedimentary sequence was collected from five lakes distributed along a transect from the western coast to the Rotch Dome glacier front: Limnopolar, Chester, Escondido, Cerro Negro and Domo lakes. A multiple dating approach based on 14C, thermoluminescence and tephrochronology was applied to the cores in order to infer the Holocene environmental history and identify the deglaciation chronology in the Byers Peninsula. The onset of the deglaciation started during the Early Holocene in the western fringe of the Byers Peninsula according to the basal dating of Limnopolar Lake (ca. 8.3 cal. ky BP). Glacial retreat gradually exposed the highest parts of the Cerro Negro nunatak in the SE corner of Byers, where Cerro Negro Lake is located; this lake was glacier-free since at least 7.5 ky. During the Mid-Holocene the retreat of the Rotch Dome glacier cleared the central part of the Byers plateau of ice, and Escondido and Chester lakes formed at 6 cal. ky BP and 5.9 ky, respectively. The dating of the basal sediments of Domo Lake suggests that the deglaciation of the current ice-free easternmost part of the Byers Peninsula occurred before 1.8 cal. ky BP. © 2016 Elsevier B.V.

Read more

Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Rico, L., Barbeta, A., Achotegui-Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol, G., Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I., Camino, M., Vives, M., Nadal-Sala, D., Sabaté, S., Gracia, C., Terradas, J. (2016) Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environmental and Experimental Botany. : 0-0.
Link
Doi: 10.1016/j.envexpbot.2017.05.012

Abstract:

The structure and diversity of freshwater diatom assemblages from Franz Josef Land Archipelago: A northern outpost for freshwater diatoms

Pla-Rabés S., Hamilton P.B., Ballesteros E., Gavrilo M., Friedlander A.M., Sala E. (2016) The structure and diversity of freshwater diatom assemblages from Franz Josef Land Archipelago: A northern outpost for freshwater diatoms. PeerJ. 2016: 0-0.
Link
Doi: 10.7717/peerj.1705

Abstract:

We examined diatom assemblages from 18 stream and pond samples in the Franz Josef Land Archipelago (FJL), the most northern land of Eurasia. More than 216 taxa were observed, revealing a rich circumpolar diatom flora, including many undescribed taxa. Widely distributed taxa were the most abundant by cell densities, while circumpolar taxa were the most species rich. Stream and pond habitats hosted different assemblages, and varied along a pH gradient. Diatoma tenuis was the most abundant and ubiquitous taxon. However, several circumpolar taxa such as Chamaepinnularia gandrupii, Cymbella botellus, Psammothidium sp. and Humidophila laevissima were also found in relatively high abundances. Aerophilic taxa were an important component of FJL diatom assemblages (Humidophila spp., Caloneis spp. and Pinnularia spp.), reflecting the large and extreme seasonal changes in Arctic conditions. Wepredict a decrease in the abundance of circumpolar taxa, an increase in local (α-) freshwater diatom diversity, but a decrease in regional diversity (circumpolar homogenization) as a result of current warming trends and to a lesser extent the increasing human footprint in the region. © 2016 Pla-Rabés et al.

Read more

Impacts of forestry planting on primary production in upland lakes from north-west Ireland

Stevenson M.A., Mcgowan S., Anderson N.J., Foy R.H., Leavitt P.R., Mcelarney Y.R., Engstrom D.R., Pla-Rabés S. (2016) Impacts of forestry planting on primary production in upland lakes from north-west Ireland. Global Change Biology. 22: 1490-1504.
Link
Doi: 10.1111/gcb.13194

Abstract:

Planted forests are increasing in many upland regions worldwide, but knowledge about their potential effects on algal communities of catchment lakes is relatively unknown. Here, the effects of afforestation were investigated using palaeolimnology at six upland lake sites in the north-west of Ireland subject to different extents of forest plantation cover (4-64% of catchment area). 210Pb-dated sediment cores were analysed for carotenoid pigments from algae, stable isotopes of bulk carbon (δ13C) and nitrogen (δ15N), and C/N ratios. In lakes with >50% of their catchment area covered by plantations, there were two- to sixfold increases in pigments from cryptophytes (alloxanthin) and significant but lower increases (39-116%) in those from colonial cyanobacteria (canthaxanthin), but no response from biomarkers of total algal abundance (β-carotene). In contrast, lakes in catchments with <20% afforestation exhibited no consistent response to forestry practices, although all lakes exhibited fluctuations in pigments and geochemical variables due to peat cutting and upland grazing prior to forest plantation. Taken together, patterns suggest that increases in cyanobacteria and cryptophyte abundance reflect a combination of mineral and nutrient enrichment associated with forest fertilization and organic matter influx which may have facilitated growth of mixotrophic taxa. This study demonstrates that planted forests can alter the abundance and community structure of algae in upland humic lakes of Ireland and Northern Ireland, despite long histories of prior catchment disturbance. Copyright © 2016 John Wiley & Sons Ltd.

Read more

Climate reconstruction for the last two millennia in central Iberia: The role of East Atlantic (EA), North Atlantic Oscillation (NAO) and their interplay over the Iberian Peninsula

Sánchez-López G., Hernández A., Pla-Rabes S., Trigo R.M., Toro M., Granados I., Sáez A., Masqué P., Pueyo J.J., Rubio-Inglés M.J., Giralt S. (2016) Climate reconstruction for the last two millennia in central Iberia: The role of East Atlantic (EA), North Atlantic Oscillation (NAO) and their interplay over the Iberian Peninsula. Quaternary Science Reviews. 149: 135-150.
Link
Doi: 10.1016/j.quascirev.2016.07.021

Abstract:

A multi-proxy characterization of the uppermost sedimentary infill of an Iberian alpine lake (Cimera, 2140 m a.s.l.) was performed to establish the climatic and environmental conditions for the Iberian Central Range (ICR) over the last two millennia. This multi-proxy characterization was used to reconstruct the intense runoff events, lake productivity and soil erosion in the lake catchment and interpret these factors in terms of temperature and precipitation variability. The Roman Period (RP; 200 BCE – 500 CE) beginning was characterized by an alternation between cold and warm periods as indicated by short-lived oscillations of intense runoff conditions and soil erosion, although warm conditions dominated the end of the period and the Early Middle Age (EMA; 500–900 CE) onset in the ICR. A noticeable decrease in intense runoff events and a progressive decrease in soil erosion during the late EMA indicated a shift to colder temperatures. In terms of precipitation, both the RP and EMA climate periods displayed a transition from dry to wet conditions that led to a decrease in lake productivity. The Medieval Climate Anomaly (MCA; 900–1300 CE) was characterized by warm and dry conditions with frequent intense runoff episodes and increases in lake productivity and soil erosion, whereas the Little Ice Age (LIA; 1300–1850 CE) showed the opposite characteristics. The Industrial Era (1850–2012 CE) presented an increase in lake productivity that likely demonstrates the influence of global warming. The spatio-temporal integration of the Cimera record with other Iberian reconstructions has been used to identify the main climate drivers over this region. During the RP and EMA, N–S and E–W humidity gradients were dominant, whereas during the MCA and LIA, these gradients were not evident. These differences could be ascribed to interactions between the North Atlantic Oscillation (NAO) and East Atlantic (EA) phases. During the RP, the general warm conditions and the E–W humidity gradient indicate a dominant interplay between a negative NAO phase and a positive EA phase (NAO−–EA+), whereas the opposite conditions during the EMA indicate a NAO+–EA− interaction. The dominant warm and arid conditions during the MCA and the cold and wet conditions during the LIA indicate the interplay of the NAO+–EA+ and NAO−–EA−, respectively. Furthermore, the higher solar irradiance during the RP and MCA may support the predominance of the EA+ phase, whereas the opposite scenario during the EMA and LIA may support the predominance of the EA− phase, which would favour the occurrence of frequent and persistent blocking events in the Atlantic region during these periods. © 2016 Elsevier Ltd

Read more