Survival vs. growth trade-off in early recruitment challenges global warming impacts on Mediterranean mountain trees

(2015) Survival vs. growth trade-off in early recruitment challenges global warming impacts on Mediterranean mountain trees. . : -.
Link
Doi: https://doi.org/10.1016/j.ppees.2015.06.004

Abstract:

The application of ecological stoichiometry to plant-microbial-soil organic matter transformations

(2015) The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. . : -.
Link
Doi: 10.1890/14-0777.1

Abstract:

Strong Induction of Minor Terpenes in Italian Cypress, Cupressus sempervirens, in Response to Infection by the Fungus Seiridium cardinale

Achotegui-Castells A., Danti R., Llusia J., Rocca G.D., Barberini S., Penuelas J. (2015) Strong Induction of Minor Terpenes in Italian Cypress, Cupressus sempervirens, in Response to Infection by the Fungus Seiridium cardinale. Journal of Chemical Ecology. : 0-0.
Link
Doi: 10.1007/s10886-015-0554-1

Abstract:

Seiridium cardinale, the main fungal pathogen responsible for cypress bark canker, is the largest threat to cypresses worldwide. The terpene response of canker-resistant clones of Italian cypress, Cupressus sempervirens, to two differently aggressive isolates of S. cardinale was studied. Phloem terpene concentrations, foliar terpene concentrations, as well as foliar terpene emission rates were analyzed 1, 10, 30, and 90 days after artificial inoculation with fungal isolates. The phloem surrounding the inoculation point exhibited de novo production of four oxygenated monoterpenes and two unidentified terpenes. The concentrations of several constitutive mono- and diterpenes increased strongly (especially α-thujene, sabinene, terpinolene, terpinen-4-ol, oxygenated monoterpenes, manool, and two unidentified diterpenes) as the infection progressed. The proportion of minor terpenes in the infected cypresses increased markedly from the first day after inoculation (from 10 % in the control to 30–50 % in the infected treatments). Foliar concentrations showed no clear trend, but emission rates peaked at day 10 in infected trees, with higher δ-3-carene (15-fold) and total monoterpene (10-fold) emissions than the control. No substantial differences were found among cypresses infected by the two fungal isolates. These results suggest that cypresses activate several direct and indirect chemical defense mechanisms after infection by S. cardinale. © 2015 Springer Science+Business Media New York

Read more

Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees

Adams H.D., Collins A.D., Briggs S.P., Vennetier M., Dickman L.T., Sevanto S.A., Garcia-Forner N., Powers H.H., Mcdowell N.G. (2015) Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees. Global Change Biology. 21: 4210-4220.
Link
Doi: 10.1111/gcb.13030

Abstract:

Higher temperatures associated with climate change are anticipated to trigger an earlier start to the growing season, which could increase the terrestrial C sink strength. Greater variability in the amount and timing of precipitation is also expected with higher temperatures, bringing increased drought stress to many ecosystems. We experimentally assessed the effects of higher temperature and drought on the foliar phenology and shoot growth of mature trees of two semiarid conifer species. We exposed field-grown trees to a ~45% reduction in precipitation with a rain-out structure ('drought'), a ~4.8 °C temperature increase with open-top chambers ('heat'), and a combination of both simultaneously ('drought + heat'). Over the 2013 growing season, drought, heat, and drought + heat treatments reduced shoot and needle growth in piñon pine (Pinus edulis) by ≥39%, while juniper (Juniperus monosperma) had low growth and little response to these treatments. Needle emergence on primary axis branches of piñon pine was delayed in heat, drought, and drought + heat treatments by 19-57 days, while secondary axis branches were less likely to produce needles in the heat treatment, and produced no needles at all in the drought + heat treatment. Growth of shoots and needles, and the timing of needle emergence correlated inversely with xylem water tension and positively with nonstructural carbohydrate concentrations. Our findings demonstrate the potential for delayed phenological development and reduced growth with higher temperatures and drought in tree species that are vulnerable to drought and reveal potential mechanistic links to physiological stress responses. Climate change projections of an earlier and longer growing season with higher temperatures, and consequent increases in terrestrial C sink strength, may be incorrect for regions where plants will face increased drought stress with climate change. © 2015 John Wiley & Sons Ltd.

Read more

The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.)

Aguade D., Poyatos R., Gomez M., Oliva J., Martinez-Vilalta J. (2015) The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.). Tree Physiology. 35: 229-242.
Link
Doi: 10.1093/treephys/tpv005

Abstract:

Drought-related tree die-off episodes have been observed in all vegetated continents. Despite much research effort, however, the multiple interactions between carbon starvation, hydraulic failure and biotic agents in driving tree mortality under field conditions are still not well understood. We analysed the seasonal variability of non-structural carbohydrates (NSCs) in four organs (leaves, branches, trunk and roots), the vulnerability to embolism in roots and branches, native embolism (percentage loss of hydraulic conductivity (PLC)) in branches and the presence of root rot pathogens in defoliated and non-defoliated individuals in a declining Scots pine (Pinus sylvestris L.) population in the NE Iberian Peninsula in 2012, which included a particularly dry and warm summer. No differences were observed between defoliated and non-defoliated pines in hydraulic parameters, except for a higher vulnerability to embolism at pressures below-2 MPa in roots of defoliated pines. No differences were found between defoliation classes in branch PLC. Total NSC (TNSC, soluble sugars plus starch) values decreased during drought, particularly in leaves. Defoliation reduced TNSC levels across tree organs, especially just before (June) and during (August) drought. Root rot infection by the fungal pathogen Onnia P. Karst spp. was detected but it did not appear to be associated to tree defoliation. However, Onnia infection was associated with reduced leaf-specific hydraulic conductivity and sapwood depth, and thus contributed to hydraulic impairment, especially in defoliated pines. Infection was also associated with virtually depleted root starch reserves during and after drought in defoliated pines. Moreover, defoliated and infected trees tended to show lower basal area increment. Overall, our results show the intertwined nature of physiological mechanisms leading to drought-induced mortality and the inherent difficulty of isolating their contribution under field conditions. © The Author 2015. Published by Oxford University Press. All rights reserved.

Read more

Comparative drought responses of Quercus ilex L. and Pinus sylvestris L. In a montane forest undergoing a vegetation shift

Aguade D., Poyatos R., Rosas T., Martinez-Vilalta J. (2015) Comparative drought responses of Quercus ilex L. and Pinus sylvestris L. In a montane forest undergoing a vegetation shift. Forests. 6: 2505-2529.
Link
Doi: 10.3390/f6082505

Abstract:

Different functional and structural strategies to cope with water shortage exist both within and across plant communities. The current trend towards increasing drought in many regions could drive some species to their physiological limits of drought tolerance, potentially leading to mortality episodes and vegetation shifts. In this paper, we study the drought responses of Quercus ilex and Pinus sylvestris in a montane Mediterranean forest where the former species is replacing the latter in association with recent episodes of drought-induced mortality. Our aim was to compare the physiological responses to variations in soil water content (SWC) and vapor pressure deficit (VPD) of the two species when living together in a mixed stand or separately in pure stands, where the canopies of both species are completely exposed to high radiation and VPD. P. sylvestris showed typical isohydric behavior, with greater losses of stomatal conductance with declining SWC and greater reductions of stored non-structural carbohydrates during drought, consistent with carbon starvation being an important factor in the mortality of this species. On the other hand, Q. ilex trees showed a more anisohydric behavior, experiencing more negative water potentials and higher levels of xylem embolism under extreme drought, presumably putting them at higher risk of hydraulic failure. In addition, our results show relatively small changes in the physiological responses of Q. ilex in mixed vs. pure stands, suggesting that the current replacement of P. sylvestris by Q. ilex will continue. © 2015 by the authors.

Read more

Reconciling expert judgement and habitat suitability models as tools for guiding sampling of threatened species

Aizpurua O., Cantu-Salazar L., San Martin G., Biver G., Brotons L., Titeux N. (2015) Reconciling expert judgement and habitat suitability models as tools for guiding sampling of threatened species. Journal of Applied Ecology. : 0-0.
Link
Doi: 10.1111/1365-2664.12515

Abstract:

Up-to-date knowledge on species distribution is needed for efficient biodiversity conservation and management decision-making. Implementing efficient sampling strategies to identify previously unknown locations of species of conservation-concern is therefore a key challenge. Both structured expert judgement and habitat suitability models may help target sampling towards areas where chances to find the species are highest. However, practitioners often object to the use of models and believe they do not result in better decisions than the subjective opinion of experts, thus potentially constraining an optimal use of available methods and information. To illustrate the potential of habitat suitability models for guiding sampling strategies, we evaluated and compared the ability of experts and models to identify important areas for the conservation of a bird species (Lanius collurio) in Luxembourg. We conducted extensive fieldwork to find as many unknown bird territories as possible according to three independent sampling strategies: (i) a sampling strategy based on structured expert judgement, (ii) a sampling strategy based on the predictions of a habitat suitability model and (iii) a general-purpose stratified random sampling strategy used as a baseline reference. Both the expert-based and the model-based sampling strategies substantially outperformed the general-purpose sampling strategy in identifying new species records. In addition, the model-based sampling strategy performed significantly better than the expert-based sampling strategy. Synthesis and applications. This study explicitly shows that habitat suitability models can efficiently guide field data collection towards suitable areas for species of conservation-concern. Results may facilitate the involvement of practitioners in the development of habitat suitability models with the objective of maximizing the robustness of modelling applications in conservation practice and management decision-making. © 2015 British Ecological Society.

Read more

Herbivory and seedling establishment in Pyrenean forests: Influence of micro- and meso-habitat factors on browsing pressure

Ameztegui A., Coll L. (2015) Herbivory and seedling establishment in Pyrenean forests: Influence of micro- and meso-habitat factors on browsing pressure. Forest Ecology and Management. 342: 103-111.
Link
Doi: 10.1016/j.foreco.2015.01.021

Abstract:

Browsing damage is among the most determinant factors that limit the establishment of tree seedlings in forests. In some areas, this process leads to massive mortalities that can reduce or even completely prevent the regeneration of some tree species. Mediterranean mountain forests have undergone during the last decades important changes in land-uses that have significantly altered the type and abundance of herbivore populations. In this study we assessed the impact of current grazing conditions in forest regeneration using a set of experimental plantations established in the Eastern Pyrenees in areas visited by domestic livestock (cattle and horses) and wild ungulates (mainly roe deer and chamois). We analyzed during 4. years the role of seedling species and size, mesohabitat (elevation and type of forest cover) and microhabitat (herbaceous cover, distance to shrub, and light availability) on the browsing-induced mortality of more than 500 seedlings of Pinus sylvestris, Pinus uncinata, Betula pendula and Abies alba, the most common tree species in the study area. Browsing-induced mortality for the three conifer species was much lower (40%) and depended on both microhabitat - mainly on the distance to protective elements such as shrubs; and mesohabitat, with an interaction between the elevational belt (site) and the type of forest cover (gaps vs. understory). In the subalpine belt, browsing on A. alba and P. uncinata was higher during summer at plots located in the forest understory whereas, during winter, it was higher at plots located in gaps. The study shows that both mesohabitat and microhabitat can exert an effect on the patterns of plant damage by herbivores, providing useful information to adapt forest management in areas particularly exposed to them. © 2015 Elsevier B.V.

Read more

Modelling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: The case of montane-subalpine Pyrenean ecotones

Ameztegui A., Coll L., Messier C. (2015) Modelling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: The case of montane-subalpine Pyrenean ecotones. Ecological Modelling. 313: 84-93.
Link
Doi: 10.1016/j.ecolmodel.2015.06.029

Abstract:

Most predictive models forecast significant upward displacement of forest species due to increases in temperatures, but not all the species respond in the same way to changes in climate. In temperate or mountain systems, biotic competitive interactions drive species distributions, and responses to climate change will ultimately depend upon productive and demographic processes such as growth, recruitment and mortality. We parameterized and used an individual-based, spatially explicit model of forest dynamics (SORTIE-ND) to investigate the role of species-specific differences in juvenile performance induced by climate change (juvenile growth and recruitment ability) in the dynamics of mixed forests located in the montane-subalpine ecotone of the Pyrenees. We assessed this role for two types of forests composed of three species with differing light requirements and sensitivity to climate change: (1) a mixed forest with two shade-intolerant pines (Pinus uncinata and Pinus sylvestris) and (2) a mixed forest composed by a shade-intolerant pine and a shade-tolerant fir (Abies alba). Our results show that for species with similar light requirements (i.e., both pines), small differences in sapling growth response to climate change can lead to significant differences in future species composition (an increase in P. sylvestris growth of 10% leads to an increase in its abundance from 42% to 50.3%). Conversely, in pine-fir forests, shade-tolerance results more decisive than climate-induced changes in growth in driving the future forest composition. © 2015 Elsevier B.V.

Read more

Increasing and decreasing trends of the atmospheric deposition of organochlorine compounds in European remote areas during the last decade

Arellano L., Fernandez P., Fonts R., Rose N.L., Nickus U., Thies H., Stuchlik E., Camarero L., Catalan J., Grimalt J.O. (2015) Increasing and decreasing trends of the atmospheric deposition of organochlorine compounds in European remote areas during the last decade. Atmospheric Chemistry and Physics. 15: 6069-6085.
Link
Doi: 10.5194/acp-15-6069-2015

Abstract:

Bulk atmospheric deposition samples were collected between 2004 and 2007 at four high-altitude European sites encompassing east (Skalnaté Pleso), west (Lochnagar), central (Gossenköllesee) and south (Redòn) regions, and analysed for legacy and current-use organochlorine compounds (OCs). Polychlorobiphenyls (PCBs) generally showed the highest deposition fluxes in the four sites, between 112 and 488 ng m-2 mo-1, and hexachlorobenzene (HCB) the lowest, a few ng m-2 mo-1. Among pesticides, endosulfans were found at higher deposition fluxes (11-177 ng m-2 mo-1) than hexachlorocyclohexanes (HCHs) (17-66 ng m-2 mo-1) in all sites except Lochnagar that was characterized by very low fluxes of this insecticide. Comparison of the present measurements with previous determinations in Redòn (1997-1998 and 2001-2002) and Gossenköllesee (1996-1998) provided for the first time an assessment of the long-term temporal trends in OC atmospheric deposition in the European background areas. PCBs showed increasing deposition trends while HCB deposition fluxes remained nearly constant. Re-emission of PCBs from soils or as a consequence of glacier melting and subsequent precipitation and trapping of the volatilized compounds may explain the observed PCB trends. This process does not occur for HCB due to its high volatility which keeps most of this pollutant in the gas phase. A significant decline of pesticide deposition was observed during this studied decade (1996-2006) which is consistent with the restriction in the use of these compounds in most of the European countries. In any case, degassing of HCHs or endosulfans from ice melting to the atmosphere should be limited because of the low Henry's law constants of these compounds that will retain them dissolved in the melted water. Investigation of the relationship between air mass trajectories arriving at each site and OC deposition fluxes showed no correlation for PCBs, which is consistent with diffuse pollution from unspecific sources as the predominant origin of these compounds in these remote sites. In contrast, significant correlations between current-use pesticides and air masses flowing from the south were observed in Gossenköllesee, Lochnagar and Redòn. In the case of Redòn, the higher proportion of air masses from the south occurred in parallel to higher temperatures, which did not allow us to discriminate between these two determinant factors of pesticide deposition. However, in Gossenköllesee and Lochnagar, the relationship between pesticide concentration and southern air masses was univocal, reflecting the impact of regions with intensive agricultural activities. © Author(s) 2015.

Read more

Pages