Biogeography of species richness gradients: Linking adaptive traits, demography and diversification

Carnicer J., Brotons L., Stefanescu C., Peñuelas J. (2012) Biogeography of species richness gradients: Linking adaptive traits, demography and diversification. Biological Reviews. 87: 457-479.
Link
Doi: 10.1111/j.1469-185X.2011.00210.x

Abstract:

Here we review how adaptive traits contribute to the emergence and maintenance of species richness gradients through their influence on demographic and diversification processes. We start by reviewing how demographic dynamics change along species richness gradients. Empirical studies show that geographical clines in population parameters and measures of demographic variability are frequent along latitudinal and altitudinal gradients. Demographic variability often increases at the extremes of regional species richness gradients and contributes to shape these gradients. Available studies suggest that adaptive traits significantly influence demographic dynamics, and set the limits of species distributions. Traits related to thermal tolerance, resource use, phenology and dispersal seem to play a significant role. For many traits affecting demography and/or diversification processes, complex mechanistic approaches linking genotype, phenotype and fitness are becoming progressively available. In several taxa, species can be distributed along adaptive trait continuums, i.e. a main axis accounting for the bulk of inter-specific variation in some correlated adaptive traits. It is shown that adaptive trait continuums can provide useful mechanistic frameworks to explain demographic dynamics and diversification in species richness gradients. Finally, we review the existence of sequences of adaptive traits in phylogenies, the interactions of adaptive traits and community context, the clinal variation of traits across geographical gradients, and the role of adaptive traits in determining the history of dispersal and diversification of clades. Overall, we show that the study of demographic and evolutionary mechanisms that shape species richness gradients clearly requires the explicit consideration of adaptive traits. To conclude, future research lines and trends in the field are briefly outlined. © 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society.

Read more

Reassessing global change research priorities in mediterranean terrestrial ecosystems: How far have we come and where do we go from here?

Doblas-Miranda E., Martinez-Vilalta J., Lloret F., Alvarez A., Avila A., Bonet F.J., Brotons L., Castro J., Curiel Yuste J., Diaz M., Ferrandis P., Garcia-Hurtado E., Iriondo J.M., Keenan T.F., Latron J., Llusia J., Loepfe L., Mayol M., More G., Moya D., Penuelas J., Pons X., Poyatos R., Sardans J., Sus O., Vallejo V.R., Vayreda J., Retana J. (0) Reassessing global change research priorities in mediterranean terrestrial ecosystems: How far have we come and where do we go from here?. Global Ecology and Biogeography. 24: 25-43.
Link
Doi: 10.1111/geb.12224

Abstract:

Aim: Mediterranean terrestrial ecosystems serve as reference laboratories for the investigation of global change because of their transitional climate, the high spatiotemporal variability of their environmental conditions, a rich and unique biodiversity and a wide range of socio-economic conditions. As scientific development and environmental pressures increase, it is increasingly necessary to evaluate recent progress and to challenge research priorities in the face of global change. Location: Mediterranean terrestrial ecosystems. Methods: This article revisits the research priorities proposed in a 1998 assessment. Results: A new set of research priorities is proposed: (1) to establish the role of the landscape mosaic on fire-spread; (2) to further research the combined effect of different drivers on pest expansion; (3) to address the interaction between drivers of global change and recent forest management practices; (4) to obtain more realistic information on the impacts of global change and ecosystem services; (5) to assess forest mortality events associated with climatic extremes; (6) to focus global change research on identifying and managing vulnerable areas; (7) to use the functional traits concept to study resilience after disturbance; (8) to study the relationship between genotypic and phenotypic diversity as a source of forest resilience; (9) to understand the balance between C storage and water resources; (10) to analyse the interplay between landscape-scale processes and biodiversity conservation; (11) to refine models by including interactions between drivers and socio-economic contexts; (12) to understand forest-atmosphere feedbacks; (13) to represent key mechanisms linking plant hydraulics with landscape hydrology. Main conclusions: (1) The interactive nature of different global change drivers remains poorly understood. (2) There is a critical need for the rapid development of regional- and global-scale models that are more tightly connected with large-scale experiments, data networks and management practice. (3) More attention should be directed to drought-related forest decline and the current relevance of historical land use.

Read more