Seasonal and diurnal variations of plant isoprenoid emissions from two dominant species in Mediterranean shrubland and forest submitted to experimental drought

Mu Z., Llusià J., Liu D., Ogaya R., Asensio D., Zhang C., Peñuelas J. (2018) Seasonal and diurnal variations of plant isoprenoid emissions from two dominant species in Mediterranean shrubland and forest submitted to experimental drought. Atmospheric Environment. 191: 105-115.
Link
Doi: 10.1016/j.atmosenv.2018.08.010

Abstract:

We tested the effect of increasing drought conditions in the Mediterranean Basin on isoprenoid emissions for the coming decades by analyzing their effect experimentally on the dominant Mediterranean species Erica multiflora in a Garraf shrubland and Quercus ilex in a Prades forest in Catalonia (Spain). Drought was simulated in Garraf using automatically sliding curtains to decrease the amount of soil moisture by 5% and in Prades by partial rainfall exclusion and runoff exclusion for a 25% decrease. We measured photosynthetic rates (A), stomatal conductance (gs) and rates of isoprenoid emission in the morning and at midday for four seasons and determined the relationship of emission rates with environmental conditions. Terpenes were emitted by both species, but only E. multiflora emitted isoprene. α-Pinene and limonene were the most abundant terpenes. Isoprenoid emissions increased with air temperature and generally decreased as the amount of soil moisture increased. The results of this study suggest that higher isoprenoid emissions can be expected in the warmer and drier conditions predicted for the coming decades in the Mediterranean region. © 2018

Read more

Impacts of global change on Mediterranean forests and their services

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Barbeta, A., Achotegui-Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol, G., Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I., Camino-Serrano, M., Vives-Ingla, M., Stocker, B.D., Balzarolo, M., Guerrieri, R., Peaucelle, M., Marañón-Jiménez, S., Bórnez-Mejías, K., Mu, Z., Descals, A., Castellanos, A., Terradas, J. (2017) Impacts of global change on Mediterranean forests and their services. Forests. 8: 0-0.
Link
Doi: 10.3390/f8120463

Abstract:

Photochemical Reflectance Index (PRI) for detecting responses of diurnal and seasonal photosynthetic activity to experimental drought and warming in a Mediterranean shrubland

Zhang, C., Filella, I., Liu, D., Ogaya, R., Llusià, J., Asensio, D., Peñuelas, J. (2017) Photochemical Reflectance Index (PRI) for detecting responses of diurnal and seasonal photosynthetic activity to experimental drought and warming in a Mediterranean shrubland. Remote Sensing. 9: 0-0.
Link
Doi: 10.3390/rs9111189

Abstract:

Physiological adjustments of a Mediterranean shrub to long-term experimental warming and drought treatments

Liu D., Llusia J., Ogaya R., Estiarte M., Llorens L., Yang X., Peñuelas J. (2016) Physiological adjustments of a Mediterranean shrub to long-term experimental warming and drought treatments. Plant Science. 252: 53-61.
Link
Doi: 10.1016/j.plantsci.2016.07.004

Abstract:

Warmer temperatures and extended drought in the Mediterranean Basin are becoming increasingly important in determining plant physiological processes and affecting the regional carbon budget. The responses of plant physiological variables such as shoot water potential (Ψ), carbon-assimilation rates (A), stomatal conductance (gs) and intrinsic water-use efficiency (iWUE) to these climatic regimes, however, are not well understood. We conducted long-term (16 years) field experiments with mild nocturnal warming (+0.6 °C) and drought (−20% soil moisture) in a Mediterranean early-successional shrubland. Warming treatment moderately influenced Ψ, A and gs throughout the sampling periods, whereas drought treatment strongly influenced these variables, especially during the summer. The combination of a natural drought in summer 2003 and the treatments significantly decreased A and iWUE. Foliar δ13C increased in the treatments relative to control, but not significantly. The values of Ψ, A and gs were correlated negatively with vapor-pressure deficit (VPD) and positively with soil moisture and tended to be more dependent on the availability of soil water. The plant, however, also improved the acclimation to drier and hotter conditions by physiological adjustments (gs and iWUE). Understanding these physiological processes in Mediterranean shrubs is crucial for assessing further climate change impacts on ecosystemic functions and services. © 2016 Elsevier Ireland Ltd

Read more

Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Rico, L., Barbeta, A., Achotegui-Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol, G., Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I., Camino, M., Vives, M., Nadal-Sala, D., Sabaté, S., Gracia, C., Terradas, J. (2016) Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environmental and Experimental Botany. : 0-0.
Link
Doi: 10.1016/j.envexpbot.2017.05.012

Abstract:

A tethered-balloon PTRMS sampling approach for surveying of landscape-scale biogenic VOC fluxes

Greenberg J.P., Penuelas J., Guenther A., Seco R., Turnipseed A., Jiang X., Filella I., Estiarte M., Sardans J., Ogaya R., Llusia J., Rapparini F. (2014) A tethered-balloon PTRMS sampling approach for surveying of landscape-scale biogenic VOC fluxes. Atmospheric Measurement Techniques. 7: 2263-2271.
Link
Doi: 10.5194/amt-7-2263-2014

Abstract:

Landscape-scale fluxes of biogenic gases were surveyed by deploying a 100 m Teflon tube attached to a tethered balloon as a sampling inlet for a fast-response proton-transfer-reaction mass spectrometer (PTRMS). Along with meteorological instruments deployed on the tethered balloon and a 3 m tripod and outputs from a regional weather model, these observations were used to estimate landscape-scale biogenic volatile organic compound fluxes with two micrometeorological techniques: mixed layer variance and surface layer gradients. This highly mobile sampling system was deployed at four field sites near Barcelona to estimate landscape-scale biogenic volatile organic compound (BVOC) emission factors in a relatively short period (3 weeks). The two micrometeorological techniques were compared with emissions predicted with a biogenic emission model using site-specific emission factors and land-cover characteristics for all four sites. The methods agreed within the uncertainty of the techniques in most cases, even though the locations had considerable heterogeneity in species distribution and complex terrain. Considering the wide range in reported BVOC emission factors for individual vegetation species (more than an order of magnitude), this temporally short and inexpensive flux estimation technique may be useful for constraining BVOC emission factors used as model inputs. © 2014 Author(s).

Read more

Physiological and antioxidant responses of Quercus ilex to drought in two different seasons

Nogues I., Llusia J., Ogaya R., Munne-Bosch S., Sardans J., Penuelas J., Loreto F. (2014) Physiological and antioxidant responses of Quercus ilex to drought in two different seasons. Plant Biosystems. 148: 268-278.
Link
Doi: 10.1080/11263504.2013.768557

Abstract:

Climate change projections forecast a warming and an associated change in the distribution and intensity of rainfalls. In the case of the Mediterranean area, this will be reflected in more frequent and severe drought periods in the future. Within a long-term (9 years) manipulation experiment, we aimed to study the effect of the soil drought projected for the coming decades (an average of 10% soil moisture reduction) onto photosynthetic rates and water relations, and onto the antioxidant and anti-stress defense capacity of Quercus ilex, a dominant species in Mediterranean forests, in two different seasons, spring and summer. Results showed that photosynthesis was limited by stomatal closure in summer. However, a decrease in photosynthesis as a consequence of drought was observed only during spring, possibly due to a low pigment concentration and to an insufficient antioxidant protection. In summer, the increased resistance to CO2 entry reduced photosynthesis in control and drought-treated leaves, though the higher pigment content and antioxidant levels in summer leaves prevented a further decrease in photosynthesis as a consequence of drought. Also total monoterpene emission rates were higher in summer than in spring, though they did not change with drought, as happened with photosynthetic pigments. On the other hand, the antioxidant defense system was induced by drought in both studied seasons, indicating an efficient activation of defense responses aiming at scavenging reactive oxygen species produced in Q. ilex leaves under drought. © 2013 © 2013 Società Botanica Italiana.

Read more

Foliar CO2 in a holm oak forest subjected to 15 years of climate change simulation

Ogaya R., Llusia J., Barbeta A., Asensio D., Liu D., Alessio G.A., Penuelas J. (2014) Foliar CO2 in a holm oak forest subjected to 15 years of climate change simulation. Plant Science. 226: 101-107.
Link
Doi: 10.1016/j.plantsci.2014.06.010

Abstract:

A long-term experimental drought to simulate future expected climatic conditions for Mediterranean forests, a 15% decrease in soil moisture for the following decades, was conducted in a holm oak forest since 1999. Net photosynthetic rate, stomatal conductance and leaf water potential were measured from 1999 to 2013 in Quercus ilex and Phillyrea latifolia, two co-dominant species of this forest. These measurements were performed in four plots, two of them received the drought treatment and the two other plots were control plots. The three studied variables decreased with increases in VPD and decreases in soil moisture in both species, but the decrease of leaf water potential during summer drought was larger in P. latifolia, whereas Q. ilex reached higher net photosynthetic rates and stomatal conductance values during rainy periods than P. latifolia. The drought treatment decreased ca. 8% the net photosynthetic rates during the overall studied period in both Q. ilex and P. latifolia, whereas there were just non-significant trends toward a decrease in leaf water potential and stomatal conductance induced by drought treatment. Future drier climate may lead to a decrease in the carbon balance of Mediterranean species, and some shrub species well resistant to drought could gain competitive advantage relative to Q. ilex, currently the dominant species of this forest. © 2014 Elsevier Ireland Ltd.

Read more

Intensive measurements of gas, water, and energy exchange between vegetation and troposphere during the MONTES campaign in a vegetation gradient from short semi-desertic shrublands to tall wet temperate forests in the NW Mediterranean Basin

Penuelas J., Guenther A., Rapparini F., Llusia J., Filella I., Seco R., Estiarte M., Mejia-Chang M., Ogaya R., Ibanez J., Sardans J., Castano L.M., Turnipseed A., Duhl T., Harley P., Vila J., Estavillo J.M., Menendez S., Facini O., Baraldi R., Geron C., Mak J., Patton E.G., Jiang X., Greenberg J. (2013) Intensive measurements of gas, water, and energy exchange between vegetation and troposphere during the MONTES campaign in a vegetation gradient from short semi-desertic shrublands to tall wet temperate forests in the NW Mediterranean Basin. Atmospheric Environment. 75: 348-364.
Link
Doi: 10.1016/j.atmosenv.2013.04.032

Abstract:

MONTES ("Woodlands") was a multidisciplinary international field campaign aimed at measuring energy, water and especially gas exchange between vegetation and atmosphere in a gradient from short semi-desertic shrublands to tall wet temperate forests in NE Spain in the North Western Mediterranean Basin (WMB). The measurements were performed at a semidesertic area (Monegros), at a coastal Mediterranean shrubland area (Garraf), at a typical Mediterranean holm oak forest area (Prades) and at a wet temperate beech forest (Montseny) during spring (April 2010) under optimal plant physiological conditions in driest-warmest sites and during summer (July 2010) with drought and heat stresses in the driest-warmest sites and optimal conditions in the wettest-coolest site. The objective of this campaign was to study the differences in gas, water and energy exchange occurring at different vegetation coverages and biomasses. Particular attention was devoted to quantitatively understand the exchange of biogenic volatile organic compounds (BVOCs) because of their biological and environmental effects in the WMB. A wide range of instruments (GC-MS, PTR-MS, meteorological sensors, O3 monitors,. .) and vertical platforms such as masts, tethered balloons and aircraft were used to characterize the gas, water and energy exchange at increasing footprint areas by measuring vertical profiles. In this paper we provide an overview of the MONTES campaign: the objectives, the characterization of the biomass and gas, water and energy exchange in the 4 sites-areas using satellite data, the estimation of isoprene and monoterpene emissions using MEGAN model, the measurements performed and the first results. The isoprene and monoterpene emission rates estimated with MEGAN and emission factors measured at the foliar level for the dominant species ranged from about 0 to 0.2mgm-2h-1 in April. The warmer temperature in July resulted in higher model estimates from about 0 to ca. 1.6mgm-2h-1 for isoprene and ca. 4.5mgm-2h-1 for monoterpenes, depending on the site vegetation and footprint area considered. There were clear daily and seasonal patterns with higher emission rates and mixing ratios at midday and summer relative to early morning and early spring. There was a significant trend in CO2 fixation (from 1 to 10mgCm-2d-1), transpiration (from1-5kgCm-2d-1), and sensible and latent heat from the warmest-driest to the coolest-wettest site. The results showed the strong land-cover-specific influence on emissions of BVOCs, gas, energy and water exchange, and therefore demonstrate the potential for feed-back to atmospheric chemistry and climate. •We present a multidisciplinary biosphere-atmosphere field campaign.•We measured a gradient from semi-desertic shrublands to wet temperate forests.•A wide range of instruments and vertical platforms were used.•Land cover strongly influenced emissions of BVOCs and gas, energy and water exchange.•Vegetation has strong potential for feed-back to atmospheric chemistry and climate. © 2013 Elsevier Ltd.

Read more

Evidence of current impact of climate change on life: A walk from genes to the biosphere

Penuelas J., Sardans J., Estiarte M., Ogaya R., Carnicer J., Coll M., Barbeta A., Rivas-Ubach A., Llusia J., Garbulsky M., Filella I., Jump A.S. (2013) Evidence of current impact of climate change on life: A walk from genes to the biosphere. Global Change Biology. 19: 2303-2338.
Link
Doi: 10.1111/gcb.12143

Abstract:

We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade-offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life. © 2013 John Wiley & Sons Ltd.

Read more

Pages