The effects of local climate on the correlation between weather and seed production differ in two species with contrasting masting habit

Bogdziewicz M., Szymkowiak J., Fernández-Martínez M., Peñuelas J., Espelta J.M. (2019) The effects of local climate on the correlation between weather and seed production differ in two species with contrasting masting habit. Agricultural and Forest Meteorology. 268: 109-115.
Link
Doi: 10.1016/j.agrformet.2019.01.016

Abstract:

Many plant species present inter-annual cycles of seed production (mast seeding), with synchronized high seed production across populations in some years. Weather is believed to be centrally involved in triggering masting. The links between meteorological conditions and seeding are well-recognized for some species, but in others consistent correlates have not been found. We used a spatially extensive data set of fruit production to test the hypothesis that the influence of weather on seed production is conditioned by local climate and that this influence varies between species with different life history traits. We used two model species. European beech (Fagus sylvatica) that is a flowering masting species, i.e. seed production is determined by variable flower production, and sessile oak (Quercus petraea) that is a fruit-maturation masting species, i.e. seed production is determined by variable ripening of more constant flower production. We predicted that climate should strongly modulate the relationship between meteorological cue and fruit production in Q. petraea, while the relationship should be uniform in F. sylvatica. The influence of meteorological cue on reproduction in fruiting masting species should be strongly conditioned by local climate because the strength of environmental constraint that modulates the success of flower-to-fruit transition is likely to vary with local climatic conditions. In accordance, the meteorological cuing was consistent in F. sylvatica. In contrast, in Q. petraea the relationship between spring temperature and seed production varied among sites and was stronger in populations at colder sites. The clear difference in meteorological conditioning of seed production between the two studied species suggests the responses of masting plants to weather can be potentially systematized according to their masting habit: i.e. fruiting or flowering. © 2019 Elsevier B.V.

Read more

The North Atlantic Oscillation synchronises fruit production in western European forests

Fernández-Martínez M., Vicca S., Janssens I.A., Espelta J.M., Peñuelas J. (2016) The North Atlantic Oscillation synchronises fruit production in western European forests. Ecography. : 0-0.
Link
Doi: 10.1111/ecog.02296

Abstract:

Weather and its lagged effects have been associated with interannual variability and synchrony of fruit production for several tree species. Such relationships are used often in hypotheses relating interannual variability in fruit production with tree resources or favourable pollinating conditions and with synchrony in fruit production among sites through the Moran effect (the synchronisation of biological processes among populations driven by meteorological variability) or the local availability of pollen. Climatic teleconnections, such as the North Atlantic Oscillation (NAO), representing weather packages, however, have rarely been correlated with fruit production, despite often being better predictors of ecological processes than is local weather. The aim of this study was to test the utility of seasonal NAO indices for predicting interannual variability and synchrony in fruit production using data from 76 forests of Abies alba, Fagus sylvatica, Picea abies, Pseudotsuga menziesii, Quercus petraea, and Q. robur distributed across central Europe. Interannual variability in fruit production for all species was significantly correlated with seasonal NAO indices, which were more prominently important predictors than local meteorological variables. The relationships identified by these analyses indicated that proximal causes were mostly responsible for the interannual variability in fruit production, supporting the premise that local tree resources and favourable pollinating conditions are needed to produce large fruit crops. Synchrony in fruit production between forests was mainly associated with weather and geographical distance among sites. Also, fruit production for a given year was less variable among sites during warm and dry springs (negative spring NAO phases). Our results identify the Moran effect as the most likely mechanism for synchronisation of fruit production at large geographical scales and the possibility that pollen availability plays a role in synchronising fruit production at local scales. Our results highlight the influence of the NAO on the patterns of fruit production across western Europe. © 2016 Nordic Society Oikos.

Read more

Temporal trends in the enhanced vegetation index and spring weather predict seed production in Mediterranean oaks

Fernandez-Martinez M., Garbulsky M., Penuelas J., Peguero G., Espelta J.M. (2015) Temporal trends in the enhanced vegetation index and spring weather predict seed production in Mediterranean oaks. Plant Ecology. 216: 1061-1072.
Link
Doi: 10.1007/s11258-015-0489-1

Abstract:

The extremely year-to-year variable production of seeds (masting) is an extended plant reproductive behaviour important for forest dynamics and food webs. The dependence of these episodes of massive seed production on recently or long-term photosynthesised carbohydrates, however, remains controversial. In this paper, we explore whether vegetation (tree canopy) changes, detected using EVI as a proxy of leaf area and photosynthetic capacity, can provide a reliable estimation of seed production. To complete this analysis, we also explored the effect of weather both in the trends of EVI and in acorn crop size. To this end, we compared the trends of the EVI and acorn production over 10 years (2000–2009) in five stands of Quercus ilex L. in Barcelona (Catalonia, NE Spain). We found that acorn production was mainly driven by a combination of: (i) a minimum initial threshold in the EVI values, (ii) an increase in EVI in the 9 ± 4 months prior to reproduction, and (iii) appropriate weather conditions (low water stress) during spring. These results indicated, apparently for the first time, that reproduction in masting species could be detected and partly predicted by remotely sensed vegetative indices. Our results suggested that this particular reproductive behaviour in Mediterranean oaks was driven by a combination of two factors, i.e. good and improving vegetation conditions, as shown by a minimum initial threshold and the increase in EVI needed for large seed crops, and the need of wet weather conditions during spring. Moreover, our results fully supported recent studies that have associated short-term photosynthate production with seed production. © 2015, Springer Science+Business Media Dordrecht.

Read more