Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid

Filella I., Peñuelas J., Llusià J. (2006) Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid. New Phytologist. 169: 135-144.
Link
Doi: 10.1111/j.1469-8137.2005.01570.x

Abstract:

• Jasmonic acid (JA) is a signalling compound with a key role in both stress and development in plants, and is reported to elicit the emission of volatile organic compounds (VOCs). Here we studied the dynamics of such emissions and the linkage with photosynthetic rates and stomatal conductance. • We sprayed JA on leaves of the Mediterranean tree species Quercus ilex and measured the photosynthetic rates, stomatal conductances, and emissions and uptake of VOCs using proton transfer reaction mass spectrometry and gas chromatography after a dark-light transition. • Jasmonic acid treatment delayed the induction of photosynthesis and stomatal conductance by approx. 20 min, and decreased them 24 h after spraying. Indications were found of both stomatal and nonstomatal limitations of photosynthesis. Monoterpene emissions were enhanced (20-30%) after JA spraying. Jasmonic acid also increased methyl salicylate (MeSa) emissions (more than twofold) 1 h after treatment, although after 24 h this effect had disappeared. Formaldehyde foliar uptake decreased significantly 24 h after JA treatment. • Both biotic and abiotic stresses can thus affect plant VOC emissions through their strong impact on JA levels. Jasmonic acid-mediated increases in monoterpene and MeSa emissions might have a protective role when confronting biotic and abiotic stresses. © New Phytologist (2005).

Read more

Seasonal contrasting changes of foliar concentrations of terpenes and other volatile organic compound in four dominant species of a Mediterranean shrubland submitted to a field experimental drought and warming

Llusià J., Peñuelas J., Alessio G.A., Estiarte M. (2006) Seasonal contrasting changes of foliar concentrations of terpenes and other volatile organic compound in four dominant species of a Mediterranean shrubland submitted to a field experimental drought and warming. Physiologia Plantarum. 127: 632-649.
Link
Doi: 10.1111/j.1399-3054.2006.00693.x

Abstract:

To test the effect of forecasted drought and warming conditions for the next decades by GCM and ecophysiological models on foliar concentrations of volatile organic compounds (VOCs) and especially of volatile terpenes, we studied four typical Mediterranean woody plants (Pinus halepensis L., Pistacia lentiscus L., Rosmarinus officinalis L. and Globularia alypum L.) under a field experimental drought and warming generated using automatically sliding curtains. Terpenes were detected in the four studied species (R. officinalis L., P halepensis L., Pistacia lentiscus L. and G. alypum L.). In general, maximum concentrations of terpenes were found in the coldest periods and minimum concentrations in the summer. Their concentrations ranged between 0.003 mg g-1 DM (eugenol) in G. alypum under drought conditions and 37 mg g-1 DM in R. officinalis under control conditions. Main volatile terpenes found in all studied species except in G. alypum were α-pinene, camphene, β-pinene, β-phellandrene and caryophyllene. In general, VOC leaf concentrations increased when soil moisture increased and decreased when air temperature increased. However, contrasting not consistent responses to the drought and warming treatments were found among species, seasons and years. For example, in P. halepensis, the concentrations decreased in response to drought in winter and instead increased in summer. Contrarily, drought decreased concentrations in summer and increased them in winter in Pistacia lentiscus. In any case, the data on seasonal VOC concentration in Mediterranean woody species provided here will add new knowledge of seasonal variation in essential oil contents of these species. These data might help in the study of flammability of Mediterranean ecosystems and in improving prediction algorithms, inventories and modelling of monoterpene emissions in response to climate change, which mostly do not consider the changes in concentration under drought stress. However, the lack of general and consistent response patterns to increasing drought and warming among species, seasons and years found here makes this task difficult. Copyright © Physiologia Plantarum 2006.

Read more