Yearly fluctuations of flower landscape in a Mediterranean scrubland: Consequences for floral resource availability

(2018) Yearly fluctuations of flower landscape in a Mediterranean scrubland: Consequences for floral resource availability. . : -.
Link
Doi: https://doi.org/10.1371/journal.pone.0191268

Abstract:

Enhanced emissions of floral volatiles by Diplotaxis erucoides (L.) in response to folivory and florivory by Pieris brassicae (L.)

Farré-Armengol G., Filella I., Llusia J., Primante C., Peñuelas J. (2015) Enhanced emissions of floral volatiles by Diplotaxis erucoides (L.) in response to folivory and florivory by Pieris brassicae (L.). Biochemical Systematics and Ecology. 63: 51-58.
Link
Doi: 10.1016/j.bse.2015.09.022

Abstract:

The main function of floral emissions of volatile organic compounds (VOCs) in entomophilous plants is to attract pollinators. Floral blends, however, can also contain volatile compounds with defensive functions. These defensive volatiles are specifically emitted when plants are attacked by pathogens or herbivores. We characterized the changes in the floral emissions of Diplotaxis erucoides induced by folivory and florivory by Pieris brassicae. Plants were continually subjected to folivory, florivory and folivory + florivory treatments for two days. We measured floral emissions with proton transfer reaction/mass spectroscopy (PTR-MS) at different times during the application of the treatments. The emissions of methanol, ethyl acetate and another compound, likely 3-butenenitrile, increased significantly in response to florivory. Methanol and 3-butenenitrile increased 2.4- and 26-fold, respectively, in response to the florivory treatment. Methanol, 3-butenenitrile and ethyl acetate increased 3-, 100- and 9-fold, respectively, in response to the folivory + florivory treatment. Folivory alone had no detectable effect on floral emissions. All VOC emissions began immediately after attack, with no evidence of delayed induction in any of the treatments. Folivory and florivory had a synergistic effect when applied together, which strengthened the defensive response when the attack was extended to the entire plant. © 2015 Elsevier Ltd.

Read more

Floral advertisement scent in a changing plant-pollinators market

Filella I., Primante C., Llusia J., Martin Gonzalez A.M., Seco R., Farre-Armengol G., Rodrigo A., Bosch J., Penuelas J. (2013) Floral advertisement scent in a changing plant-pollinators market. Scientific Reports. 3: 0-0.
Link
Doi: 10.1038/srep03434

Abstract:

Plant-pollinator systems may be considered as biological markets in which pollinators choose between different flowers that advertise their nectar/pollen rewards. Although expected to play a major role in structuring plant-pollinator interactions, community-wide patterns of flower scent signals remain largely unexplored. Here we show for the first time that scent advertisement is higher in plant species that bloom early in the flowering period when pollinators are scarce relative to flowers than in species blooming later in the season when there is a surplus of pollinators relative to flowers. We also show that less abundant flowering species that may compete with dominant species for pollinator visitation early in the flowering period emit much higher proportions of the generalist attractant β-ocimene. Overall, we provide a first community-wide description of the key role of seasonal dynamics of plant-specific flower scent emissions, and reveal the coexistence of contrasting plant signaling strategies in a plant-pollinator market.

Read more

BVOCs in the plant-pollinator market and other applications of ecology to betytyerunderstand BVOC emissions in the environment.

Peñuelas J, Filella I, Farré G, Owen S, Primante C, Rodrigo A, Martín A, Bosch J, Seco R, Porcar A, Llusià J, Greenberg J, Harley P, Rapparini F, Estiarte M, Mejia-Chang M, Ogaya R, Ibañez J, Sardans J, Turnipseed A, Geron C, Duhl T, Facini O, Baraldi R, Rapparini F, Guenther A (2012) BVOCs in the plant-pollinator market and other applications of ecology to betytyerunderstand BVOC emissions in the environment. BVOCs Gordon Conference, Biogenic Hydrocarbons & the atmosphere. Reaching across scales: from molecule to the globe. Bates College, Maine. June 24-29. Key note invited speaker.

A syrphid fly uses olfactory cues to find a non-yellow flower

Primante C., Dötterl S. (2010) A syrphid fly uses olfactory cues to find a non-yellow flower. Journal of Chemical Ecology. 36: 1207-1210.
Link
Doi: 10.1007/s10886-010-9871-6

Abstract:

Syrphid flies are frequent flower visitors, but little is known about the cues they use to find flowers. We determined the importance of visual and olfactory cues in a flight cage bioassay using Cirsium arvense (Asteraceae) flower heads and experienced Episyrphus balteatus (Diptera, Syrphidae). We tested the response of antennae of the flies to headspace inflorescence scent samples by using gas chromatography coupled to electroantennography (GCEAD). The bioassays revealed that both sexes of experienced flies rely on olfactory, not visual, cues to find C. arvense flower heads. The GC-EAD measurements demonstrated that male and female flies have olfactory receptors for several of the compounds emitted by the inflorescences. These electroantennographic-active compounds may be responsible for the attraction of flies to the C. arvense flower heads. Among the compounds eliciting an antennal response are methyl salicylate and 2-phenylethanol, which were previously described as syrphid attractants. Overall, our study demonstrates for the first time that a syrphid fly uses olfactory and not visual cues to find a pollen/nectar host-plant. © Springer Science+Business Media, LLC 2010.

Read more