Vegetation changes and human settlement of Easter Island during the last millennia: A multiproxy study of the Lake Raraku sediments

Canellas-Bolta N., Rull V., Saez A., Margalef O., Bao R., Pla-Rabes S., Blaauw M., Valero-Garces B., Giralt S. (2013) Vegetation changes and human settlement of Easter Island during the last millennia: A multiproxy study of the Lake Raraku sediments. Quaternary Science Reviews. 72: 36-48.
Link
Doi: 10.1016/j.quascirev.2013.04.004

Abstract:

Earlier palynological studies of lake sediments from Easter Island suggest that the island underwent a recent and abrupt replacement of palm-dominated forests by grasslands, interpreted as a deforestation by indigenous people. However, the available evidence is inconclusive due to the existence of extended hiatuses and ambiguous chronological frameworks in most of the sedimentary sequences studied. This has given rise to an ongoing debate about the timing and causes of the assumed ecological degradation and cultural breakdown. Our multiproxy study of a core recovered from Lake Raraku highlights the vegetation dynamics and environmental shifts in the catchment and its surroundings during the late Holocene. The sequence contains shorter hiatuses than in previously recovered cores and provides a more continuous history of environmental changes. The results show a long, gradual and stepped landscape shift from palm-dominated forests to grasslands. This change started c. 450 BC and lasted about two thousand years. The presence of Verbena litoralis, a common weed, which is associated with human activities in the pollen record, the significant correlation between shifts in charcoal influx, and the dominant pollen types suggest human disturbance of the vegetation. Therefore, human settlement on the island occurred c. 450 BC, some 1500 years earlier than is assumed. Climate variability also exerted a major influence on environmental changes. Two sedimentary gaps in the record are interpreted as periods of droughts that could have prevented peat growth and favoured its erosion during the Medieval Climate Anomaly and the Little Ice Age, respectively. At c. AD 1200, the water table rose and the former Raraku mire turned into a shallow lake, suggesting higher precipitation/evaporation rates coeval with a cooler and wetter Pan-Pacific AD 1300 event. Pollen and diatom records show large vegetation changes due to human activities c. AD 1200. Other recent vegetation changes also due to human activities entail the introduction of taxa (e.g. Psidium guajava, Eucalyptus sp.) and the disappearance of indigenous plants such as Sophora toromiro during the two last centuries. Although the evidence is not conclusive, the American origin of V. litoralis re-opens the debate about the possible role of Amerindians in the human colonisation of Easter Island. © 2013 Elsevier Ltd.

Read more

Global change revealed by palaeolimnological records from remote lakes: A review

Catalan J., Pla-Rabes S., Wolfe A.P., Smol J.P., Ruhland K.M., Anderson N.J., Kopacek J., Stuchlik E., Schmidt R., Koinig K.A., Camarero L., Flower R.J., Heiri O., Kamenik C., Korhola A., Leavitt P.R., Psenner R., Renberg I. (2013) Global change revealed by palaeolimnological records from remote lakes: A review. Journal of Paleolimnology. 49: 513-535.
Link
Doi: 10.1007/s10933-013-9681-2

Abstract:

Over recent decades, palaeolimnological records from remote sites have provided convincing evidence for the onset and development of several facets of global environmental change. Remote lakes, defined here as those occurring in high latitude or high altitude regions, have the advantage of not being overprinted by local anthropogenic processes. As such, many of these sites record broad-scale environmental changes, frequently driven by regime shifts in the Earth system. Here, we review a selection of studies from North America and Europe and discuss their broader implications. The history of investigation has evolved synchronously with the scope and awareness of environmental problems. An initial focus on acid deposition switched to metal and other types of pollutants, then climate change and eventually to atmospheric deposition-fertilising effects. However, none of these topics is independent of the other, and all of them affect ecosystem function and biodiversity in profound ways. Currently, remote lake palaeolimnology is developing unique datasets for each region investigated that benchmark current trends with respect to past, purely natural variability in lake systems. Fostering conceptual and methodological bridges with other environmental disciplines will upturn contribution of remote lake palaeolimnology in solving existing and emerging questions in global change science and planetary stewardship. © 2013 Springer Science+Business Media Dordrecht.

Read more

Paleolimnological assessment of limnological change in 10 lakes from northwest Saskatchewan downwind of the Athabasca oils sands based on analysis of siliceous algae and trace metals in sediment cores

Laird K.R., Das B., Kingsbury M., Moos M.T., Pla-Rabes S., Ahad J.M.E., Wiltse B., Cumming B.F. (2013) Paleolimnological assessment of limnological change in 10 lakes from northwest Saskatchewan downwind of the Athabasca oils sands based on analysis of siliceous algae and trace metals in sediment cores. Hydrobiologia. 720: 55-73.
Link
Doi: 10.1007/s10750-013-1623-5

Abstract:

The extraction of bitumen from the Athabasca oil sands is rapidly expanding, and emission of sulphur and nitrogen oxides has substantially increased. To determine whether lakes downwind of this development in northwest Saskatchewan have been detrimentally impacted since development of the oil sands, a paleolimnological assessment of ten lakes was carried out. Analysis of diatom valves and inferences of diatom-inferred pH indicated that emissions have not resulted in widespread chronic acidification of acid-sensitive lakes ~80-250 km east and northeast of the oil sands development around Fort McMurray and Fort Mackay. However, one of the closest sites to the development indicated a slight decline in diatom-inferred pH, but the two next closest sites, both of which had higher alkalinity, did not show any evidence of acidification. There were also no consistent trends in the concentration or flux of total or individual priority pollutants including lead, mercury, copper, zinc and vanadium. The sedimentation rates in most lakes increased since the mid-1900s, along with increased flux of both diatoms and scaled chrysophytes. Subtle changes in the species assemblages of diatoms and increased flux of diatoms and chrysophyte scales are consistent with recent climate change in this region. © 2013 Springer Science+Business Media Dordrecht.

Read more

A 70,000 year multiproxy record of climatic and environmental change from Rano Aroi peatland (Easter Island)

Margalef O., Canellas-Bolta N., Pla-Rabes S., Giralt S., Pueyo J.J., Joosten H., Rull V., Buchaca T., Hernandez A., Valero-Garces B.L., Moreno A., Saez A. (2013) A 70,000 year multiproxy record of climatic and environmental change from Rano Aroi peatland (Easter Island). Global and Planetary Change. 108: 72-84.
Link
Doi: 10.1016/j.gloplacha.2013.05.016

Abstract:

The Rano Aroi mire on Easter Island (also known as Rapa Nui; 27°09'S, 109°27'W, 430m above sea level) provides a unique non-marine record in the central South Pacific Ocean for reconstructing Late Pleistocene environmental changes. The results of a multiproxy study on two cores from the center and margin of the Rano Aroi mire, including peat stratigraphy, facies analysis, elemental and isotope geochemistry on bulk organic matter, X-ray fluorescence (XRF) core scanning and macrofossil analysis, were used to infer past water levels and vegetation changes. The chronology was based on 18 14C AMS dates for the upper 8.7m. The extrapolated age for the base of the sequence is 70kyr, which implies that this record is the oldest paleolimnological record on Easter Island. The recovered Rano Aroi sequence consists of a radicel peat formed primarily from the remains of sedges, grasses and Polygonaceae that have accumulated since Marine Isotopic Stage (MIS) 4 (70kyr BP) to the present. From 60 to 40kyr BP (MIS 3), high precipitation/runoff events were recorded as organic mud facies with lighter δ13C, low C/N values and high Ti content, indicating higher detritic input to the mire. A gradual shift in δ13C bulk organic matter from -14% to -26%, recorded between 50 and 45calkyr BP, suggests a progressive change in local peat-forming vegetation from C4 to C3 plant types. Post-depositional Ca and Fe enrichment during sub-aerial peat exposure and very low sedimentation rates indicate lower water tables during Late MIS 3 (39-31calkyr BP). During MIS 2 (27.8-19calkyr BP), peat production rates were very low, most likely due to cold temperatures, as reconstructed from other Easter Island records during the Last Glacial Maximum (LGM). Geochemical and macrofossil evidence shows that peat accumulation reactivates at approximately 17.5calkyr BP, reaching the highest accumulation rates at 14calkyr BP. Peat accretion decreased from 5.0 to 2.5calkyr BP, coinciding with a regional Holocene aridity phase. The main hydrological and environmental changes in Rano Aroi reflect variations in the South Pacific Convergence Zone (SPCZ), Southern Westerlies (SW) storm track, and South Pacific Anticyclone (SPA) locations. © 2013 Elsevier B.V.

Read more

Stability and endemicity of benthic diatom assemblages from different substrates in a maritime stream on Byers Peninsula, Livingston Island, Antarctica: The role of climate variability

Pla-Rabes S., Toro M., Van De Vijver B., Rochera C., Villaescusa J.A., Camacho A., Quesada A. (2013) Stability and endemicity of benthic diatom assemblages from different substrates in a maritime stream on Byers Peninsula, Livingston Island, Antarctica: The role of climate variability. Antarctic Science. 25: 254-269.
Link
Doi: 10.1017/S0954102012000922

Abstract:

Diatom assemblages from four different substrates from a stream on Byers Peninsula were analysed during the summer. The substrate type was the main factor explaining the variability in the diatom assemblages. Sandy biofilms showed a higher diversity and a greater number of endemic species. Two main hydrological regimes were observed: 1) a hydrologically unstable period with high variability in stream flow and successive freezing and thawing periods, 2) a late summer hydrologically stable period, characterized by low stream velocity and variability. The structure of the diatom communities was different between the two hydrological periods, although the substrate modulated the difference. The diatom assemblages showed low similarity among the substrates and high dominance of endemic species during early summer. The late summer community showed high dominance of motile cosmopolitan species on all substrate types. As the length of both hydrological regimes would ultimately be driven by climatic variability, the predicted climate warming could reduce overall stream diversity. Hence, subtle changes could alter the length of both hydrological periods. The relationship between diatom species association with different substrates and hydrological regimes could be relevant for tracking past climate variability using diatom palaeorecords. Copyright © Antarctic Science Ltd 2013.

Read more