The effects of local climate on the correlation between weather and seed production differ in two species with contrasting masting habit

Bogdziewicz M., Szymkowiak J., Fernández-Martínez M., Peñuelas J., Espelta J.M. (2019) The effects of local climate on the correlation between weather and seed production differ in two species with contrasting masting habit. Agricultural and Forest Meteorology. 268: 109-115.
Link
Doi: 10.1016/j.agrformet.2019.01.016

Abstract:

Many plant species present inter-annual cycles of seed production (mast seeding), with synchronized high seed production across populations in some years. Weather is believed to be centrally involved in triggering masting. The links between meteorological conditions and seeding are well-recognized for some species, but in others consistent correlates have not been found. We used a spatially extensive data set of fruit production to test the hypothesis that the influence of weather on seed production is conditioned by local climate and that this influence varies between species with different life history traits. We used two model species. European beech (Fagus sylvatica) that is a flowering masting species, i.e. seed production is determined by variable flower production, and sessile oak (Quercus petraea) that is a fruit-maturation masting species, i.e. seed production is determined by variable ripening of more constant flower production. We predicted that climate should strongly modulate the relationship between meteorological cue and fruit production in Q. petraea, while the relationship should be uniform in F. sylvatica. The influence of meteorological cue on reproduction in fruiting masting species should be strongly conditioned by local climate because the strength of environmental constraint that modulates the success of flower-to-fruit transition is likely to vary with local climatic conditions. In accordance, the meteorological cuing was consistent in F. sylvatica. In contrast, in Q. petraea the relationship between spring temperature and seed production varied among sites and was stronger in populations at colder sites. The clear difference in meteorological conditioning of seed production between the two studied species suggests the responses of masting plants to weather can be potentially systematized according to their masting habit: i.e. fruiting or flowering. © 2019 Elsevier B.V.

Read more

Sea spray influences water chemical composition of Mediterranean semi-natural springs

Fernández-Martínez M., Margalef O., Sayol F., Asensio D., Bagaria G., Corbera J., Sabater F., Domene X., Preece C. (2019) Sea spray influences water chemical composition of Mediterranean semi-natural springs. Catena. 173: 414-423.
Link
Doi: 10.1016/j.catena.2018.10.035

Abstract:

Sea spray aerosol (SSA) is responsible for the large-scale transfer of particles from the sea to the land, leading to significant deposition of a range of ions, predominantly Na+, K+, Mg2+ Ca2+, and Cl−. Up to now, there has been little research into the effects of SSA on spring water chemistry. Therefore, we sampled 303 semi-natural springs across Catalonia (NE Iberian Peninsula) and analysed the concentrations of 20 different ions and elements, and determined the impact of SSA (using distance to the coast as a proxy) as well as climate, lithology and human disturbances. We found that distance to the coast had a clear effect on the water chemical composition of springs, while accounting for potentially confounding factors such as anthropogenic water pollution (nitrate, NO3 −), differences in lithology and annual rainfall. Our results showed that springs located closer to the coast had higher Cl−, SO4 2−, Na+, Mg2+, K+ and Ca2+ concentrations than those of springs located further away. Precipitation was generally negatively correlated with the concentration of almost all elements analysed. The concentration of NO3 − increased with distance to the coast, concurrently with farming activities, located mainly inland in the study area. These results demonstrate that SSA has an important effect on the groundwater of coastal zones, up to a distance of around 70 km from the coastline. This analysis reveals the main natural and human processes that influence spring water chemistry in this Mediterranean region, information that could be helpful in similar regions for ecological studies, water quality policies, and for the improvement of predictions in the current context of global change. © 2018 Elsevier B.V.

Read more

Global trends in carbon sinks and their relationships with CO2 and temperature

Fernández-Martínez M., Sardans J., Chevallier F., Ciais P., Obersteiner M., Vicca S., Canadell J.G., Bastos A., Friedlingstein P., Sitch S., Piao S.L., Janssens I.A., Peñuelas J. (2019) Global trends in carbon sinks and their relationships with CO2 and temperature. Nature Climate Change. 9: 73-79.
Link
Doi: 10.1038/s41558-018-0367-7

Abstract:

Elevated CO2 concentrations increase photosynthesis and, potentially, net ecosystem production (NEP), meaning a greater CO2 uptake. Climate, nutrients and ecosystem structure, however, influence the effect of increasing CO2. Here we analysed global NEP from MACC-II and Jena CarboScope atmospheric inversions and ten dynamic global vegetation models (TRENDY), using statistical models to attribute the trends in NEP to its potential drivers: CO2, climatic variables and land-use change. We found that an increased CO2 was consistently associated with an increased NEP (1995–2014). Conversely, increased temperatures were negatively associated with NEP. Using the two atmospheric inversions and TRENDY, the estimated global sensitivities for CO2 were 6.0 ± 0.1, 8.1 ± 0.3 and 3.1 ± 0.1 PgC per 100 ppm (~1 °C increase), and −0.5 ± 0.2, −0.9 ± 0.4 and −1.1 ± 0.1 PgC °C−1 for temperature. These results indicate a positive CO2 effect on terrestrial C sinks that is constrained by climate warming. © 2018, The Author(s), under exclusive licence to Springer Nature Limited.

Read more

The bioelements, the elementome, and the biogeochemical niche

Peñuelas J., Fernández-Martínez M., Ciais P., Jou D., Piao S., Obersteiner M., Vicca S., Janssens I.A., Sardans J. (2019) The bioelements, the elementome, and the biogeochemical niche. Ecology. 100: 0-0.
Link
Doi: 10.1002/ecy.2652

Abstract:

Every living creature on Earth is made of atoms of the various bioelements that are harnessed in the construction of molecules, tissues, organisms, and communities, as we know them. Organisms need these bioelements in specific quantities and proportions to survive and grow. Distinct species have different functions and life strategies, and have therefore developed distinct structures and adopted a certain combination of metabolic and physiological processes. Each species is thus also expected to have different requirements for each bioelement. We therefore propose that a “biogeochemical niche” can be associated with the classical ecological niche of each species. We show from field data examples that a biogeochemical niche is characterized by a particular elementome defined as the content of all (or at least most) bioelements. The differences in elementome among species are a function of taxonomy and phylogenetic distance, sympatry (the bioelemental compositions should differ more among coexisting than among non-coexisting species to avoid competitive pressure), and homeostasis with a continuum between high homeostasis/low plasticity and low homeostasis/high plasticity. This proposed biogeochemical niche hypothesis has the advantage relative to other associated theoretical niche hypotheses that it can be easily characterized by actual quantification of a measurable trait: the elementome of a given organism or a community, being potentially applicable across taxa and habitats. The changes in bioelemental availability can determine genotypic selection and therefore have a feedback on ecosystem function and organization, and, at the end, become another driving factor of the evolution of life and the environment. © 2019 by the Ecological Society of America

Read more