Designing a network of green infrastructure to enhance the conservation value of protected areas and maintain ecosystem services

Lanzas M., Hermoso V., de-Miguel S., Bota G., Brotons L. (2019) Designing a network of green infrastructure to enhance the conservation value of protected areas and maintain ecosystem services. Science of the Total Environment. 651: 541-550.
Link
Doi: 10.1016/j.scitotenv.2018.09.164

Abstract:

There is a growing demand for holistic landscape planning to enhance sustainable use of ecosystem services (ESS) and maintenance of the biodiversity that supports them. In this context, the EU is developing policy to regulate the maintenance of ESS and enhance connectivity among protected areas (PAs). This is known as the network of Green Infrastructure (GI). However, there is not a working framework defined to plan the spatial design of such network of GI. Here, we use the software Marxan with Zones, to prioritize the spatial distribution of different management zones that accommodate the needs of a network of GI. These zones included a conservation zone, mainly devoted to protecting biodiversity, a GI zone, that aimed at connecting PAs and maintaining regulating and cultural ESS; and a management zone devoted to exploiting provisioning ESS. We performed four planning scenarios that distribute the targets for ESS and biodiversity in different ways across management zones. We also conducted a sensitivity analysis by increasing ESS targets to explore trade-offs that may occur when managing together biodiversity and ESS. We use Catalonia (northeastern Spain) as a case study. We found that the representation of ESS could be achieved for intermediate targets in all scenarios. There was, however, a threshold on these targets over which trade-offs appeared between maintaining regulating and cultural ESS and biodiversity versus getting access to provisioning ESS. These “thresholds values” were displaced towards higher ESS targets when we moved from more strict to more flexible planning scenarios (i.e., scenarios that allowed mixing representation of objectives for biodiversity and ESS within the same zone). This methodological approach could help design a framework to integrate biodiversity and ESS management in holistic plans and decision making and, at the same time, meeting European mandates concerning the design of GI networks, or similar needs elsewhere. © 2018 Elsevier B.V.

Read more

Urban development versus wetland loss in a coastal Latin American city: Lessons for sustainable land use planning

Rojas C., Munizaga J., Rojas O., Martínez C., Pino J. (2019) Urban development versus wetland loss in a coastal Latin American city: Lessons for sustainable land use planning. Land Use Policy. 80: 47-56.
Link
Doi: 10.1016/j.landusepol.2018.09.036

Abstract:

Urbanization is a primary cause of wetland loss in coastal metropolitan regions. Therefore, it challenges the preservation of biodiversity and the provision of key ecosystem services for urban settlements. These services include leisure and recreation, climate and water regulation, water purification, and especially alleviation of natural hazards. Tsunami flood mitigation is a particularly valuable regulating service provided by these wetlands, as recently evidenced during the 2010 tsunami that hit the central coast of Chile. The Concepción Metropolitan Area (CMA), located on the central coast of Chile, has experienced noticeable wetland loss in recent decades. Our study focused on the Rocuant-Andalién wetland, which has been particularly affected by urbanization. This wetland strongly contributes to flood control, and has provided effective protection against the CMA's latest tsunamis (1835 and 2010). Based on Strategic Environmental Assessment (SEA), we have quantified urban growth over the wetland, both executed and projected under the Metropolitan Urban Plan of Concepción (MUPC). Recent loss in wetland area by urban growth has been quantified using land use and cover change (LUCC) maps from 2004 to 2014, obtained from the classification of Landsat images. Prospective changes (considering the complete MUPC deployment) have been inferred by combining the MUPC with the 2014 land cover map. In addition, we quantified the observed effect and planned urban growth on the wetland protected area, geoforms and potential flooding based on the area affected by the last Tsunami. Results show that urban areas have increased by 28% between 2004 and 2014, while future increase is expected to reach 238%. In contrast, wetland area has decreased by 10% from 2004 to 2014 and is expected to decrease by up to 32 %. Thus, the MUPC is not contributing to the mitigation of wetland loss nor the preservation of its biodiversity and ecosystem services. Implications for coastal planning are discussed. © 2018

Read more

Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake

Zheng B.-X., Ding K., Yang X.-R., Wadaan M.A.M., Hozzein W.N., Peñuelas J., Zhu Y.-G. (2019) Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake. Science of the Total Environment. 647: 1113-1120.
Link
Doi: 10.1016/j.scitotenv.2018.07.454

Abstract:

The direct application of inorganic-phosphate-solubilizing bacteria (iPSBs) for improving the efficiency of phosphorus (P) use leads to a low rate of bacterial survival. Biochar is a good inoculum carrier for microbial survival, and diverse feedstocks can have different effects. We generated an iPSB community using seven selected iPSB strains with various phylogenic taxonomies and P-solubilizing abilities. Biochar was then inoculated with the iPSB community and applied to soil in pots seeded with rape (Brassica napus). Growth of the rape for four weeks and the effects of biochars produced from six raw feedstocks, rice straw, rice husks, soybean straw, peanut shells, corn cobs and wood, were compared. The synthetic iPSB community had a larger capacity to solubilize inorganic P and exude organic anions than any of the individual strains. The structure of the iPSB community was analyzed by high-throughput sequencing four weeks after inoculation. All seven iPSB strains were detected, dominated by Arthrobacter defluvii 06-OD12. The abundance of the iPSB community was significantly correlated with rape biomass, P content and P uptake (P

Read more

Early stage litter decomposition across biomes

(2018) Early stage litter decomposition across biomes. . : -.
Link
Doi: 10.1016/j.scitotenv.2018.01.012

Abstract:

Fitxa AIGUA I CANVI GLOBAL (català)

(2018) Fitxa AIGUA I CANVI GLOBAL (català). . : -.

Annual Report CREAF 2017

(2018) Annual Report CREAF 2017. . : -.

Is there a substitution of Pinaceae by Fagaceae in temperate forests at the global scale?

Alfaro Reyna T., Retana J., Martínez-Vilalta J. (2018) Is there a substitution of Pinaceae by Fagaceae in temperate forests at the global scale?. Global and Planetary Change. 166: 41-47.
Link
Doi: 10.1016/j.gloplacha.2018.04.001

Abstract:

Reports on forest decline, changes in species composition and the distribution of forests in response to changes in climate and land use are increasing worldwide. Temperate forests are largely dominated by two tree families: Pinaceae and Fagaceae. These two families have distinct functional properties and different responses to environmental factors. Several local and regional assessments, particularly in Europe, have found that species of Fagaceae are invading areas previously dominated by Pinaceae. The main aim of this synthesis study is to analyze the relative dynamics of Pinaceae and Fagaceae species in temperate forests around the world, with the following specific objectives: (1) establish if there is a consistent directional substitution of Pinaceae by Fagaceae worldwide; and (2) determine whether these directional changes are associated with specific climatic conditions or certain geographic regions, reflecting differences in historical forest management and land use. A bibliographic review was performed and 51 papers were found that met the search criteria, including a total of 121 case studies in which the relative dynamics of Pinaceae and Fagaceae were evaluated. Our results show that the relative abundance of Fagaceae increased in 71% of cases (P → F dynamics), whereas Pinaceae relative abundance increased in 17% of cases (F → P) and 12% of cases did not show clear changes. Increases of Fagaceae relative to Pinaceae were less clear in areas where vegetation dynamics were driven by natural disturbances. Our results indicate a widespread increase in dominance of Fagaceae species at the expense of Pinaceae across northern temperate forests, with the exception of Eastern North America. The potential implications for ecosystem function and forest resilience under ongoing climate change are large and clearly deserve further study. © 2018 Elsevier B.V.

Read more

Bird community response in mountain pine forests of the Pyrenees managed under a shelterwood system

Ameztegui, A., Gil-Tena, A., Faus, J., Piqué, M., Brotons, L., Camprodon, J. (2018) Bird community response in mountain pine forests of the Pyrenees managed under a shelterwood system. Forest Ecology and Management. 407: 95-105.
Link
Doi: 10.1016/j.foreco.2017.09.002

Abstract:

Isotopic methods for non-destructive assessment of carbon dynamics in shrublands under long-term climate change manipulation

Andresen L.C., Domínguez M.T., Reinsch S., Smith A.R., Schmidt I.K., Ambus P., Beier C., Boeckx P., Bol R., de Dato G., Emmett B.A., Estiarte M., Garnett M.H., Kröel-Dulay G., Mason S.L., Nielsen C.S., Peñuelas J., Tietema A. (2018) Isotopic methods for non-destructive assessment of carbon dynamics in shrublands under long-term climate change manipulation. Methods in Ecology and Evolution. 9: 866-880.
Link
Doi: 10.1111/2041-210X.12963

Abstract:

Long-term climate change experiments are extremely valuable for studying ecosystem responses to environmental change. Examination of the vegetation and the soil should be non-destructive to guarantee long-term research. In this paper, we review field methods using isotope techniques for assessing carbon dynamics in the plant–soil–air continuum, based on recent field experience and examples from a European climate change manipulation network. Eight European semi-natural shrubland ecosystems were exposed to warming and drought manipulations. One field site was additionally exposed to elevated atmospheric CO2. We discuss the isotope methods that were used across the network to evaluate carbon fluxes and ecosystem responses, including: (1) analysis of the naturally rare isotopes of carbon (13C and 14C) and nitrogen (15N); (2) use of in situ pulse labelling with 13CO2, soil injections of 13C- and 15N-enriched substrates, or continuous labelling by free air carbon dioxide enrichment (FACE) and (3) manipulation of isotopic composition of soil substrates (14C) in laboratory-based studies. The natural 14C signature of soil respiration gave insight into a possible long-term shift in the partitioning between the decomposition of young and old soil carbon sources. Contrastingly, the stable isotopes 13C and 15N were used for shorter-term processes, as the residence time in a certain compartment of the stable isotope label signal is limited. The use of labelled carbon-compounds to study carbon mineralisation by soil micro-organisms enabled to determine the long-term effect of climate change on microbial carbon uptake kinetics and turnover. Based on the experience with the experimental work, we provide recommendations for the application of the reviewed methods to study carbon fluxes in the plant–soil–air continuum in climate change experiments. 13C-labelling techniques exert minimal physical disturbances, however, the dilution of the applied isotopic signal can be challenging. In addition, the contamination of the field site with excess 13C or 14C can be a problem for subsequent natural abundance (14C and 13C) or label studies. The use of slight changes in carbon and nitrogen natural abundance does not present problems related to potential dilution or contamination risks, but the usefulness depends on the fractionation rate of the studied processes. © 2018 The Authors. Methods in Ecology and Evolution © 2018 British Ecological Society

Read more

Forest diversity plays a key role in determining the stand carbon stocks of Mexican forests

Arasa-Gisbert, R., Vayreda, J., Román-Cuesta, R.M., Villela, S.A., Mayorga, R., Retana, J. (2018) Forest diversity plays a key role in determining the stand carbon stocks of Mexican forests. Forest Ecology and Management. 415-416: 160-171.
Link
Doi: 10.1016/j.foreco.2018.02.023

Abstract:

Pages