The ecological benefits of larger colony size may promote polygyny in ants

Boulay R., Arnan X., Cerda X., Retana J. (0) The ecological benefits of larger colony size may promote polygyny in ants. Journal of Evolutionary Biology. 27: 2856-2863.
Link
Doi: 10.1111/jeb.12515

Abstract:

How polygyny evolved in social insect societies is a long-standing question. This phenomenon, which is functionally similar to communal breeding in vertebrates, occurs when several queens come together in the same nest to lay eggs that are raised by workers. As a consequence, polygyny drastically reduces genetic relatedness among nestmates. It has been suggested that the short-term benefits procured by group living may outweigh the costs of sharing the same nesting site and thus contribute to organisms rearing unrelated individuals. However, tests of this hypothesis are still limited. To examine the evolutionary emergence of polygyny, we reviewed the literature to build a data set containing life-history traits for 149 Palearctic ant species and combined this data set with a reconstructed phylogeny. We show that monogyny is the ancestral state and that polygyny has evolved secondarily and independently throughout the phylogenetic tree. The occurrence of polygyny is significantly correlated with larger colony size, dependent colony founding and ecological dominance. Although polydomy (when a colony simultaneously uses several connected nests) tends to occur more frequently in polygynous species, this trend is not significant when phylogenetic history is accounted for. Overall, our results indicate that polygyny may have evolved in ants in spite of the reduction in nestmate relatedness because large colony size provides immediate ecological advantages, such as the more efficient use of temporal food resources. We suggest that the competitive context of ant communities may have provided the conditions necessary for the evolution of polygyny in some clades.

Read more

Reassessing global change research priorities in mediterranean terrestrial ecosystems: How far have we come and where do we go from here?

Doblas-Miranda E., Martinez-Vilalta J., Lloret F., Alvarez A., Avila A., Bonet F.J., Brotons L., Castro J., Curiel Yuste J., Diaz M., Ferrandis P., Garcia-Hurtado E., Iriondo J.M., Keenan T.F., Latron J., Llusia J., Loepfe L., Mayol M., More G., Moya D., Penuelas J., Pons X., Poyatos R., Sardans J., Sus O., Vallejo V.R., Vayreda J., Retana J. (0) Reassessing global change research priorities in mediterranean terrestrial ecosystems: How far have we come and where do we go from here?. Global Ecology and Biogeography. 24: 25-43.
Link
Doi: 10.1111/geb.12224

Abstract:

Aim: Mediterranean terrestrial ecosystems serve as reference laboratories for the investigation of global change because of their transitional climate, the high spatiotemporal variability of their environmental conditions, a rich and unique biodiversity and a wide range of socio-economic conditions. As scientific development and environmental pressures increase, it is increasingly necessary to evaluate recent progress and to challenge research priorities in the face of global change. Location: Mediterranean terrestrial ecosystems. Methods: This article revisits the research priorities proposed in a 1998 assessment. Results: A new set of research priorities is proposed: (1) to establish the role of the landscape mosaic on fire-spread; (2) to further research the combined effect of different drivers on pest expansion; (3) to address the interaction between drivers of global change and recent forest management practices; (4) to obtain more realistic information on the impacts of global change and ecosystem services; (5) to assess forest mortality events associated with climatic extremes; (6) to focus global change research on identifying and managing vulnerable areas; (7) to use the functional traits concept to study resilience after disturbance; (8) to study the relationship between genotypic and phenotypic diversity as a source of forest resilience; (9) to understand the balance between C storage and water resources; (10) to analyse the interplay between landscape-scale processes and biodiversity conservation; (11) to refine models by including interactions between drivers and socio-economic contexts; (12) to understand forest-atmosphere feedbacks; (13) to represent key mechanisms linking plant hydraulics with landscape hydrology. Main conclusions: (1) The interactive nature of different global change drivers remains poorly understood. (2) There is a critical need for the rapid development of regional- and global-scale models that are more tightly connected with large-scale experiments, data networks and management practice. (3) More attention should be directed to drought-related forest decline and the current relevance of historical land use.

Read more

Dwarf trees, super-sized shrubs and scaling: Why is plant stature so important?

Mencuccini M. (0) Dwarf trees, super-sized shrubs and scaling: Why is plant stature so important?. Plant, Cell and Environment. 38: 1-3.
Link
Doi: 10.1111/pce.12442

Abstract:

[No abstract available]

Read more

Discrimination of Soils and Assessment of Soil Fertility Using Information from an Ion Selective Electrodes Array and Artificial Neural Networks

Mimendia A., Gutierrez J.M., Alcaniz J.M., del Valle M. (0) Discrimination of Soils and Assessment of Soil Fertility Using Information from an Ion Selective Electrodes Array and Artificial Neural Networks. Clean - Soil, Air, Water. 42: 1808-1815.
Link
Doi: 10.1002/clen.201300923

Abstract:

Multichannel sensor measurements combined with advanced treatment is the departure point for a new concept in sensorics, the electronic tongue. Our setup worked with an array of 20 ion selective electrodes plus an artificial neural network used as a pattern recognition method applied to soil analysis. With this design, we got a versatile tool which was able to perform qualitative and quantitative determinations. As first application, the qualitative discrimination between six distinct soil types based on their extractable components was attempted. The procedure was simplified to a single extraction step before measurements. Water, a BaCl2 saline solution and an acetic acid extract were evaluated as extracting agents. The best performance was reached with the acetic acid extraction method with a correct classification rate and sensitivity both of 94%, and a specificity of 100%. In addition, a quantitative determination of several physicochemical properties of agricultural interest, such as organic carbon content and selected cations (like K+ or Mg2+) and anions (like NO3 - or Cl-) was also demonstrated, showing satisfactory agreement with the reference methods. An electronic tongue system - the new approach in chemical analysis consisting of multidimensional sensor signals plus computer processing tools - showed the ability in distinguishing six distinct soil types in a first qualitative application example. A quantitative model demonstrated the correct estimation of selected cations (K+, Mg2+), anions (NO3 -, Cl-) plus the organic carbon content.

Read more

Seasonally different response of photosynthetic activity to daytime and night-time warming in the Northern Hemisphere

Tan J., Piao S., Chen A., Zeng Z., Ciais P., Janssens I.A., Mao J., Myneni R.B., Peng S., Penuelas J., Shi X., Vicca S. (0) Seasonally different response of photosynthetic activity to daytime and night-time warming in the Northern Hemisphere. Global Change Biology. 21: 377-387.
Link
Doi: 10.1111/gcb.12724

Abstract:

Over the last century the Northern Hemisphere has experienced rapid climate warming, but this warming has not been evenly distributed seasonally, as well as diurnally. The implications of such seasonal and diurnal heterogeneous warming on regional and global vegetation photosynthetic activity, however, are still poorly understood. Here, we investigated for different seasons how photosynthetic activity of vegetation correlates with changes in seasonal daytime and night-time temperature across the Northern Hemisphere (>30°N), using Normalized Difference Vegetation Index (NDVI) data from 1982 to 2011 obtained from the Advanced Very High Resolution Radiometer (AVHRR). Our analysis revealed some striking seasonal differences in the response of NDVI to changes in day- vs. night-time temperatures. For instance, while higher daytime temperature (Tmax) is generally associated with higher NDVI values across the boreal zone, the area exhibiting a statistically significant positive correlation between Tmax and NDVI is much larger in spring (41% of area in boreal zone - total area 12.6 × 106 km2) than in summer and autumn (14% and 9%, respectively). In contrast to the predominantly positive response of boreal ecosystems to changes in Tmax, increases in Tmax tended to negatively influence vegetation growth in temperate dry regions, particularly during summer. Changes in night-time temperature (Tmin) correlated negatively with autumnal NDVI in most of the Northern Hemisphere, but had a positive effect on spring and summer NDVI in most temperate regions (e.g., Central North America and Central Asia). Such divergent covariance between the photosynthetic activity of Northern Hemispheric vegetation and day- and night-time temperature changes among different seasons and climate zones suggests a changing dominance of ecophysiological processes across time and space. Understanding the seasonally different responses of vegetation photosynthetic activity to diurnal temperature changes, which have not been captured by current land surface models, is important for improving the performance of next generation regional and global coupled vegetation-climate models.

Read more

Pages