Afforestation neutralizes soil pH

Hong, S., Piao, S., Chen, A., Liu, Y., Liu, L., Peng, S., Sardans, J., Sun, Y., Peñuelas, J., Zeng, H. (2018) Afforestation neutralizes soil pH. Nature Communications. 9: 0-0.
Link
Doi: 10.1038/s41467-018-02970-1

Abstract:

Effect of climatic and soil moisture conditions on mushroom productivity and related ecosystem services in Mediterranean pine stands facing climate change

Karavani, A., De Cáceres, M., Martínez de Aragón, J., Bonet, J.A., de-Miguel, S. (2018) Effect of climatic and soil moisture conditions on mushroom productivity and related ecosystem services in Mediterranean pine stands facing climate change. Agricultural and Forest Meteorology. 248: 432-440.
Link
Doi: 10.1016/j.agrformet.2017.10.024

Abstract:

Global Carbon Budget 2017

Le Quéré C., Andrew R.M., Friedlingstein P., Sitch S., Pongratz J., Manning A.C., Ivar Korsbakken J., Peters G.P., Canadell J.G., Jackson R.B., Boden T.A., Tans P.P., Andrews O.D., Arora V.K., Bakker D.C.E., Barbero L., Becker M., Betts R.A., Bopp L., Chevallier F., Chini L.P., Ciais P., Cosca C.E., Cross J., Currie K., Gasser T., Harris I., Hauck J., Haverd V., Houghton R.A., Hunt C.W., Hurtt G., Ilyina T., Jain A.K., Kato E., Kautz M., Keeling R.F., Klein Goldewijk K., Körtzinger A., Landschützer P., Lefèvre N., Lenton A., Lienert S., Lima I., Lombardozzi D., Metzl N., Millero F., Monteiro P.M.S., Munro D.R., Nabel J.E.M.S., Nakaoka S.-I., Nojiri Y., Antonio Padin X., Peregon A., Pfeil B., Pierrot D., Poulter B., Rehder G., Reimer J., Rödenbeck C., Schwinger J., Séférian R., Skjelvan I., Stocker B.D., Tian H., Tilbrook B., Tubiello F.N., Laan-Luijkx I.T.V., Werf G.R.V., Van Heuven S., Viovy N., Vuichard N., Walker A.P., Watson A.J., Wiltshire A.J., Zaehle S., Zhu D. (2018) Global Carbon Budget 2017. Earth System Science Data. 10: 405-448.
Link
Doi: 10.5194/essd-10-405-2018

Abstract:

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere-the "global carbon budget"-is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1δ. For the last decade available (2007-2016), EFF was 9.4±0.5 GtC yr-1, ELUC 1.3±0.7 GtC yr-1, GATM 4.7±0.1 GtC yr-1, SOCEAN 2.4±0.5 GtC yr-1, and SLAND 3.0±0.8 GtC yr-1, with a budget imbalance BIM of 0.6 GtC yr-1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9±0.5 GtC yr-1. Also for 2016, ELUC was 1.3±0.7 GtC yr-1, GATM was 6.1±0.2 GtC yr-1, SOCEAN was 2.6±0.5 GtC yr-1, and SLAND was 2.7±1.0 GtC yr-1, with a small BIM of-0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007-2016), reflecting in part the high fossil emissions and the small SLAND consistent with El Ninõ conditions. The global atmospheric CO2 concentration reached 402.8±0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6-9 months indicate a renewed growth in EFF of C2.0% (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017 (GCP, 2017). © 2018 Author(s).

Read more

Tree size and climatic water deficit control root to shoot ratio in individual trees globally

Ledo, A., Paul, K.I., Burslem, D.F.R.P., Ewel, J.J., Barton, C., Battaglia, M., Brooksbank, K., Carter, J., Eid, T.H., England, J.R., Fitzgerald, A., Jonson, J., Mencuccini, M., Montagu, K.D., Montero, G., Mugasha, W.A., Pinkard, E., Roxburgh, S., Ryan, C.M., Ruiz-Peinado, R., Sochacki, S., Specht, A., Wildy, D., Wirth, C., Zerihun, A., Chave, J. (2018) Tree size and climatic water deficit control root to shoot ratio in individual trees globally. New Phytologist. 217: 8-11.
Link
Doi: 10.1111/nph.14863

Abstract:

Preliminary growth functions for Eucalyptus gunnii in the UK

Leslie, A.D., Mencuccini, M., Perks, M.P. (2018) Preliminary growth functions for Eucalyptus gunnii in the UK. Biomass and Bioenergy. 108: 464-469.
Link
Doi: 10.1016/j.biombioe.2017.10.037

Abstract:

Long-term experimental drought combined with natural extremes accelerate vegetation shift in a Mediterranean holm oak forest

Liu D., Ogaya R., Barbeta A., Yang X., Peñuelas J. (2018) Long-term experimental drought combined with natural extremes accelerate vegetation shift in a Mediterranean holm oak forest. Environmental and Experimental Botany. 151: 1-11.
Link
Doi: 10.1016/j.envexpbot.2018.02.008

Abstract:

Increasing drought combined with natural extremes are expected to accelerate forest die-off and shifts in vegetation in the Mediterranean Basin. However, fewer studies have explored these climate-driven changes in forest ecosystems. A long-term (17-year) experimental drought (−30% precipitation) was established in a Mediterranean holm oak forest with high (H) and low (L) canopies to determine the changes in stem mortality, recruitment and composition shifts. Experimental drought increased annual stem mortality rate at the community level for both H- and L-canopies. Natural drought amplified the effects of experimental drought on stem mortality at the community level and of Q. ilex for H- and L-canopies. The timescales of natural drought, however, varied substantially with canopy types and species, with shorter timescales in L- than H-canopy and for Q. ilex than P. latifolia. Furthermore, experimental drought combined with natural extremes amplified the increases in stem mortality and decreases in growth for L-canopy. Contrasting responses between Q. ilex and P. latifolia for the relative in abundance and growth were observed in L-canopy and drought treatment reinforced the vegetation shift favoring P. latifolia. These findings suggest continuous drought regimes accelerated a vegetation shift, implying potential consequences for the functions and services for water-limited forest ecosystems. © 2018 Elsevier B.V.

Read more

Extension of the growing season increases vegetation exposure to frost

Liu, Q., Piao, S., Janssens, I.A., Fu, Y., Peng, S., Lian, X., Ciais, P., Myneni, R.B., Peñuelas, J., Wang, T. (2018) Extension of the growing season increases vegetation exposure to frost. Nature Communications. 9: 0-0.
Link
Doi: 10.1038/s41467-017-02690-y

Abstract:

Historical and event-based bioclimatic suitability predicts regional forest vulnerability to compound effects of severe drought and bark beetle infestation

Lloret F., Kitzberger T. (2018) Historical and event-based bioclimatic suitability predicts regional forest vulnerability to compound effects of severe drought and bark beetle infestation. Global Change Biology. 24: 1952-1964.
Link
Doi: 10.1111/gcb.14039

Abstract:

Vulnerability to climate change, and particularly to climate extreme events, is expected to vary across species ranges. Thus, we need tools to standardize the variability in regional climatic legacy and extreme climate across populations and species. Extreme climate events (e.g., droughts) can erode populations close to the limits of species' climatic tolerance. Populations in climatic-core locations may also become vulnerable because they have developed a greater demand for resources (i.e., water) that cannot be enough satisfied during the periods of scarcity. These mechanisms can become exacerbated in tree populations when combined with antagonistic biotic interactions, such as insect infestation. We used climatic suitability indices derived from Species Distribution Models (SDMs) to standardize the climatic conditions experienced across Pinus edulis populations in southwestern North America, during a historical period (1972–2000) and during an extreme event (2001–2007), when the compound effect of hot drought and bark beetle infestation caused widespread die-off and mortality. Pinus edulis climatic suitability diminished dramatically during the die-off period, with remarkable variation between years. P. edulis die-off occurred mainly not just in sites that experienced lower climatic suitability during the drought but also where climatic suitability was higher during the historical period. The combined effect of historically high climatic suitability and a marked decrease in the climatic suitability during the drought best explained the range-wide mortality. Lagged effects of climatic suitability loss in previous years and co-occurrence of Juniperus monosperma also explained P. edulis die-off in particular years. Overall, the study shows that past climatic legacy, likely determining acclimation, together with competitive interactions plays a major role in responses to extreme drought. It also provides a new approach to standardize the magnitude of climatic variability across populations using SDMs, improving our capacity to predict population's or species' vulnerability to climatic change. © 2018 John Wiley & Sons Ltd

Read more

Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency

Lun, F., Liu, J., Ciais, P., Nesme, T., Chang, J., Wang, R., Goll, D., Sardans, J., Peñuelas, J., Obersteiner, M. (2018) Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth System Science Data. 10: 1-18.
Link
Doi: 10.5194/essd-10-1-2018

Abstract:

Exploring the links between social metabolism and biodiversity distribution across landscape gradients: A regional-scale contribution to the land-sharing versus land-sparing debate

Marull, J., Tello, E., Bagaria, G., Font, X., Cattaneo, C., Pino, J. (2018) Exploring the links between social metabolism and biodiversity distribution across landscape gradients: A regional-scale contribution to the land-sharing versus land-sparing debate. Science of the Total Environment. 619-620: 1272-1285.
Link
Doi: 10.1016/j.scitotenv.2017.11.196

Abstract:

Pages