Plasticity in hydraulic architecture of Scots pine across Eurasia

Poyatos R., Martínez-Vilalta J., Čermák J., Ceulemans R., Granier A., Irvine J., Köstner B., Lagergren F., Meiresonne L., Nadezhdina N., Zimmermann R., Llorens P., Mencuccini M. (2007) Plasticity in hydraulic architecture of Scots pine across Eurasia. Oecologia. 153: 245-259.
Enlace
Doi: 10.1007/s00442-007-0740-0

Resumen:

Widespread tree species must show physiological and structural plasticity to deal with contrasting water balance conditions. To investigate these plasticity mechanisms, a meta-analysis of Pinus sylvestris L. sap flow and its response to environmental variables was conducted using datasets from across its whole geographical range. For each site, a Jarvis-type, multiplicative model was used to fit the relationship between sap flow and photosynthetically active radiation, vapour pressure deficit (D) and soil moisture deficit (SMD); and a logarithmic function was used to characterize the response of stomatal conductance (G s) to D. The fitted parameters of those models were regressed against climatic variables to study the acclimation of Scots pine to dry/warm conditions. The absolute value of sap flow and its sensitivity to D and SMD increased with the average summer evaporative demand. However, relative sensitivity of G s to D (m/G s,ref, where m is the slope and G s,ref is reference G s at D = 1 kPa) did not increase with evaporative demand across populations, and transpiration per unit leaf area at a given D increased accordingly in drier/warmer climates. This physiological plasticity was linked to the previously reported climate- and size-related structural acclimation of leaf to sapwood area ratios. G s,ref, and its absolute sensitivity to D (m), tended to decrease with age/height of the trees as previously reported for other pine species. It is unclear why Scots pines have higher transpiration rates at drier/warmer sites, at the expense of lower water-use efficiency. In any case, our results suggest that these structural adjustments may not be enough to prevent lower xylem tensions at the driest sites. © 2007 Springer-Verlag.

Leer más

Modelling evapotranspiration in a Scots pine stand under Mediterranean mountain climate using the GLUE methodology

Poyatos R., Villagarcía L., Domingo F., Piñol J., Llorens P. (2007) Modelling evapotranspiration in a Scots pine stand under Mediterranean mountain climate using the GLUE methodology. Agricultural and Forest Meteorology. 146: 13-28.
Enlace
Doi: 10.1016/j.agrformet.2007.05.003

Resumen:

Canopy transpiration (Ec) and soil evaporation (Es) in a Mediterranean Scots pine stand were simulated using a two-layer model, with a Jarvis-type submodel of canopy stomatal conductance (Gs) and a soil resistance to evaporation expressed as a function of superficial soil moisture. Sap flow measurements and soil evaporation data, together with meteorological and soil moisture variables were used to calibrate the model. Gs was calibrated using the generalized likelihood uncertainty estimation (GLUE) methodology, first with data from the year 2004, a year characterised by mild meteorological conditions. Then, data from the year 2003, which included an intense summer drought, was used to update the results from the previous calibration. The discrepancy between the diurnal courses of modelled and measured Ec using best-fit parameters was not related to any particular situation of meteorology or soil moisture. Model performance improved at the daily scale, but the model failed to simulate Ec adequately during the year 2005. Maximum modelled Es rates were 0.7 mm day-1 with the ratio Es/Ec being typically under 0.3 during the growing season. The GLUE analysis revealed that parameters representing reference stomatal aperture at a vapour pressure deficit (D) value equal to 1 kPa (Gs,ref), and sensitivity to D (m) were the most relevant, and were consistent with the hydraulic theory of stomatal regulation. Parameters controlling the response to superficial soil moisture deficit only appeared sensitive in the calibration with data from the year 2003, suggesting that response to deeper soil layers should also be considered in the model. Updating the original calibration reduced predictive uncertainty and constrained the value of some parameters. Nevertheless, it seems that representations of variable plant and soil hydraulic resistances, are required to simulate long-term Ec in seasonally-dry Mediterranean forest stands. © 2007 Elsevier B.V. All rights reserved.

Leer más