Correction to: Below-ground hydraulic constraints during drought-induced decline in Scots pine (Annals of Forest Science, (2018), 75, 4, (100), 10.1007/s13595-018-0778-7)

Poyatos R., Aguadé D., Martínez-Vilalta J. (2019) Correction to: Below-ground hydraulic constraints during drought-induced decline in Scots pine (Annals of Forest Science, (2018), 75, 4, (100), 10.1007/s13595-018-0778-7). Annals of Forest Science. 76: 0-0.
Enlace
Doi: 10.1007/s13595-019-0825-z

Resumen:

The article was published without the submitted data availability statement linking readers to a public repository. Due to publication modifications, the information appears missing in the original article. The following corrects previous version of the statement: Data availability The datasets generated and/or analysed during the current study are available in Zenodo Repository (Poyatos et al. 2018). The datasets were not peer reviewed. The original article has been corrected. © 2019, INRA and Springer-Verlag France SAS, part of Springer Nature.

Leer más

Below-ground hydraulic constraints during drought-induced decline in Scots pine

Poyatos R., Aguadé D., Martínez-Vilalta J. (2018) Below-ground hydraulic constraints during drought-induced decline in Scots pine. Annals of Forest Science. 75: 0-0.
Enlace
Doi: 10.1007/s13595-018-0778-7

Resumen:

Key message: Below-crown hydraulic resistance, a proxy for below-ground hydraulic resistance, increased during drought in Scots pine, but larger increases were not associated to drought-induced defoliation. Accounting for variable below-ground hydraulic conductance in response to drought may be needed for accurate predictions of forest water fluxes and drought responses in xeric forests. Context: Hydraulic deterioration is an important trigger of drought-induced tree mortality. However, the role of below-ground hydraulic constraints remains largely unknown. Aims: We investigated the association between drought-induced defoliation and seasonal dynamics of below-crown hydraulic resistance (a proxy for below-ground hydraulic resistance), associated to variations in water supply and demand in a field population of Scots pine (Pinus sylvestris L.) Methods: Below-crown hydraulic resistance (rbc) of defoliated and non-defoliated pines was obtained from the relationship between maximum leaf-specific sap flow rates and maximum stem pressure difference estimated from xylem radius variations. The percent contribution of rbc to whole-tree hydraulic resistance (%rbc) was calculated by comparing stem water potential variations with the water potential difference between the leaves and the soil. Results: rbc and %rbc increased with drought in both defoliated and non-defoliated pines. However, non-defoliated trees showed larger increases in rbc between spring and summer. The difference between defoliation classes is unexplained by differences in root embolism, and it is possibly related to seasonal changes in other properties of the roots and the soil-root interface. Conclusion: Our results highlight the importance of increasing below-ground hydraulic constraints during summer drought but do not clearly link drought-induced defoliation with severe below-ground hydraulic impairment in Scots pine. © 2018, INRA and Springer-Verlag France SAS, part of Springer Nature.

Leer más

The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.)

Aguade D., Poyatos R., Gomez M., Oliva J., Martinez-Vilalta J. (2015) The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.). Tree Physiology. 35: 229-242.
Enlace
Doi: 10.1093/treephys/tpv005

Resumen:

Drought-related tree die-off episodes have been observed in all vegetated continents. Despite much research effort, however, the multiple interactions between carbon starvation, hydraulic failure and biotic agents in driving tree mortality under field conditions are still not well understood. We analysed the seasonal variability of non-structural carbohydrates (NSCs) in four organs (leaves, branches, trunk and roots), the vulnerability to embolism in roots and branches, native embolism (percentage loss of hydraulic conductivity (PLC)) in branches and the presence of root rot pathogens in defoliated and non-defoliated individuals in a declining Scots pine (Pinus sylvestris L.) population in the NE Iberian Peninsula in 2012, which included a particularly dry and warm summer. No differences were observed between defoliated and non-defoliated pines in hydraulic parameters, except for a higher vulnerability to embolism at pressures below-2 MPa in roots of defoliated pines. No differences were found between defoliation classes in branch PLC. Total NSC (TNSC, soluble sugars plus starch) values decreased during drought, particularly in leaves. Defoliation reduced TNSC levels across tree organs, especially just before (June) and during (August) drought. Root rot infection by the fungal pathogen Onnia P. Karst spp. was detected but it did not appear to be associated to tree defoliation. However, Onnia infection was associated with reduced leaf-specific hydraulic conductivity and sapwood depth, and thus contributed to hydraulic impairment, especially in defoliated pines. Infection was also associated with virtually depleted root starch reserves during and after drought in defoliated pines. Moreover, defoliated and infected trees tended to show lower basal area increment. Overall, our results show the intertwined nature of physiological mechanisms leading to drought-induced mortality and the inherent difficulty of isolating their contribution under field conditions. © The Author 2015. Published by Oxford University Press. All rights reserved.

Leer más

Comparative drought responses of Quercus ilex L. and Pinus sylvestris L. In a montane forest undergoing a vegetation shift

Aguade D., Poyatos R., Rosas T., Martinez-Vilalta J. (2015) Comparative drought responses of Quercus ilex L. and Pinus sylvestris L. In a montane forest undergoing a vegetation shift. Forests. 6: 2505-2529.
Enlace
Doi: 10.3390/f6082505

Resumen:

Different functional and structural strategies to cope with water shortage exist both within and across plant communities. The current trend towards increasing drought in many regions could drive some species to their physiological limits of drought tolerance, potentially leading to mortality episodes and vegetation shifts. In this paper, we study the drought responses of Quercus ilex and Pinus sylvestris in a montane Mediterranean forest where the former species is replacing the latter in association with recent episodes of drought-induced mortality. Our aim was to compare the physiological responses to variations in soil water content (SWC) and vapor pressure deficit (VPD) of the two species when living together in a mixed stand or separately in pure stands, where the canopies of both species are completely exposed to high radiation and VPD. P. sylvestris showed typical isohydric behavior, with greater losses of stomatal conductance with declining SWC and greater reductions of stored non-structural carbohydrates during drought, consistent with carbon starvation being an important factor in the mortality of this species. On the other hand, Q. ilex trees showed a more anisohydric behavior, experiencing more negative water potentials and higher levels of xylem embolism under extreme drought, presumably putting them at higher risk of hydraulic failure. In addition, our results show relatively small changes in the physiological responses of Q. ilex in mixed vs. pure stands, suggesting that the current replacement of P. sylvestris by Q. ilex will continue. © 2015 by the authors.

Leer más

A new look at water transport regulation in plants

Martinez-Vilalta J., Poyatos R., Aguade D., Retana J., Mencuccini M. (2014) A new look at water transport regulation in plants. New Phytologist. : 0-0.
Enlace
Doi: 10.1111/nph.12912

Resumen:

Plant function requires effective mechanisms to regulate water transport at a variety of scales. Here, we develop a new theoretical framework describing plant responses to drying soil, based on the relationship between midday and predawn leaf water potentials. The intercept of the relationship (Λ) characterizes the maximum transpiration rate per unit of hydraulic transport capacity, whereas the slope (σ) measures the relative sensitivity of the transpiration rate and plant hydraulic conductance to declining water availability. This framework was applied to a newly compiled global database of leaf water potentials to estimate the values of Λ and σ for 102 plant species. Our results show that our characterization of drought responses is largely consistent within species, and that the parameters Λ and σ show meaningful associations with climate across species. Parameter σ was ≤1 in most species, indicating a tight coordination between the gas and liquid phases of water transport, in which canopy transpiration tended to decline faster than hydraulic conductance during drought, thus reducing the pressure drop through the plant. The quantitative framework presented here offers a new way of characterizing water transport regulation in plants that can be used to assess their vulnerability to drought under current and future climatic conditions. © 2014 New Phytologist Trust.

Leer más

Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine

Poyatos R., Aguade D., Galiano L., Mencuccini M., Martinez-Vilalta J. (2013) Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine. New Phytologist. 200: 388-401.
Enlace
Doi: 10.1111/nph.12278

Resumen:

Summary: Drought-induced defoliation has recently been associated with the depletion of carbon reserves and increased mortality risk in Scots pine (Pinus sylvestris). We hypothesize that defoliated individuals are more sensitive to drought, implying that potentially higher gas exchange (per unit of leaf area) during wet periods may not compensate for their reduced photosynthetic area. We measured sap flow, needle water potentials and whole-tree hydraulic conductance to analyse the drought responses of co-occurring defoliated and nondefoliated Scots pines in northeast Spain during typical (2010) and extreme (2011) drought conditions. Defoliated Scots pines showed higher sap flow per unit leaf area during spring, but were more sensitive to summer drought, relative to nondefoliated pines. This pattern was associated with a steeper decline in soil-to-leaf hydraulic conductance with drought and an enhanced sensitivity of canopy conductance to soil water availability. Near-homeostasis in midday water potentials was observed across years and defoliation classes, with minimum values of -2.5 MPa. Enhanced sensitivity to drought and prolonged periods of near-zero gas exchange were consistent with low levels of carbohydrate reserves in defoliated trees. Our results support the critical links between defoliation, water and carbon availability, and their key roles in determining tree survival and recovery under drought. © 2013 New Phytologist Trust.

Leer más

Defoliación inducida por sequía y límites hidráulicos a la asimilación asociados al agotamiento de carbohidratos de reserva en pino albar.

Poyatos R, Aguadé D, Galiano L, Martínez-Vilalta J (2012) Defoliación inducida por sequía y límites hidráulicos a la asimilación asociados al agotamiento de carbohidratos de reserva en pino albar. II Coloquio de Primavera de Ecofisiología Forestal, Binifaldó (Mallorca), 19-23 Junio 2012.Comunicación oral.