Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Rico, L., Barbeta, A., Achotegui-Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol, G., Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I., Camino, M., Vives, M., Nadal-Sala, D., Sabaté, S., Gracia, C., Terradas, J. (2016) Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environmental and Experimental Botany. : 0-0.
Enlace
Doi: 10.1016/j.envexpbot.2017.05.012

Resumen:

Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain

Sardans J., Alonso R., Carnicer J., Fernández-Martínez M., Vivanco M.G., Peñuelas J. (2016) Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain. Perspectives in Plant Ecology, Evolution and Systematics. 18: 52-69.
Enlace
Doi: 10.1016/j.ppees.2016.01.001

Resumen:

Concentrations of nutrient elements in organisms and in the abiotic environment are key factors influencing ecosystem structure and function. We studied how concentrations and stoichiometries of nitrogen (N), phosphorus (P) and potassium (K) in leaves of forest trees are related to phylogeny and to environmental factors (mean annual precipitation, mean annual temperature, forest type, and nitrogen deposition). Using data for 4691 forest plots from across Spain, we tested the following hypotheses: (i) that foliar stoichiometries of forest trees are strongly influenced by phylogeny, (ii) that climate, as an important driver of plant uptake and nutrient use efficiency, affects foliar stoichiometry, (iii) that long-term loads of N influence N, P and K concentrations and ratios in natural vegetation, and (iv) that sympatric species are differentiated according to their foliar stoichiometry, thereby reducing the intensity of resource competition. Our analyses revealed that several factors contributed to interspecific variation in elemental composition and stoichiometry. These included phylogeny, forest type, climate, N deposition, and competitive neighborhood relationships (probably related to niche segregation effect).These findings support the notion that foliar elemental composition reflects adaptation both to regional factors such as climate and to local factors such as competition with co-occurring species. © 2016 Elsevier GmbH.

Leer más