Shifting from a fertilization-dominated to a warming-dominated period

Peñuelas, J., Ciais, P., Canadell, J.G., Janssens, I.A., Fernández-Martínez, M., Carnicer, J., Obersteiner, M., Piao, S., Vautard, R., Sardans, J. (2017) Shifting from a fertilization-dominated to a warming-dominated period. Nature Ecology and Evolution. 1: 1438-1445.
Enlace
Doi: 10.1038/s41559-017-0274-8

Resumen:

Impacts of global change on Mediterranean forests and their services

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Barbeta, A., Achotegui-Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol, G., Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I., Camino-Serrano, M., Vives-Ingla, M., Stocker, B.D., Balzarolo, M., Guerrieri, R., Peaucelle, M., Marañón-Jiménez, S., Bórnez-Mejías, K., Mu, Z., Descals, A., Castellanos, A., Terradas, J. (2017) Impacts of global change on Mediterranean forests and their services. Forests. 8: 0-0.
Enlace
Doi: 10.3390/f8120463

Resumen:

Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Rico, L., Barbeta, A., Achotegui-Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol, G., Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I., Camino, M., Vives, M., Nadal-Sala, D., Sabaté, S., Gracia, C., Terradas, J. (2016) Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environmental and Experimental Botany. : 0-0.
Enlace
Doi: 10.1016/j.envexpbot.2017.05.012

Resumen:

Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain

Sardans J., Alonso R., Carnicer J., Fernández-Martínez M., Vivanco M.G., Peñuelas J. (2016) Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain. Perspectives in Plant Ecology, Evolution and Systematics. 18: 52-69.
Enlace
Doi: 10.1016/j.ppees.2016.01.001

Resumen:

Concentrations of nutrient elements in organisms and in the abiotic environment are key factors influencing ecosystem structure and function. We studied how concentrations and stoichiometries of nitrogen (N), phosphorus (P) and potassium (K) in leaves of forest trees are related to phylogeny and to environmental factors (mean annual precipitation, mean annual temperature, forest type, and nitrogen deposition). Using data for 4691 forest plots from across Spain, we tested the following hypotheses: (i) that foliar stoichiometries of forest trees are strongly influenced by phylogeny, (ii) that climate, as an important driver of plant uptake and nutrient use efficiency, affects foliar stoichiometry, (iii) that long-term loads of N influence N, P and K concentrations and ratios in natural vegetation, and (iv) that sympatric species are differentiated according to their foliar stoichiometry, thereby reducing the intensity of resource competition. Our analyses revealed that several factors contributed to interspecific variation in elemental composition and stoichiometry. These included phylogeny, forest type, climate, N deposition, and competitive neighborhood relationships (probably related to niche segregation effect).These findings support the notion that foliar elemental composition reflects adaptation both to regional factors such as climate and to local factors such as competition with co-occurring species. © 2016 Elsevier GmbH.

Leer más

Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: Relationships with climate, N deposition and tree growth

Sardans J., Alonso R., Janssens I.A., Carnicer J., Vereseglou S., Rillig M.C., Fernández-Martínez M., Sanders T.G.M., Peñuelas J. (2015) Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: Relationships with climate, N deposition and tree growth. Functional Ecology. : 0-0.
Enlace
Doi: 10.1111/1365-2435.12541

Resumen:

This study investigated the factors underlying the variability of needle and soil elemental composition and stoichiometry and their relationships with growth in Pinus sylvestris forests throughout the species' distribution in Europe by analysing data from 2245 forest stands. Needle N concentrations and N:P ratios were positively correlated with total atmospheric N deposition, whereas needle P concentrations were negatively correlated. These relationships were especially pronounced at sites where high levels of N deposition coincided with both higher mean annual temperature and higher mean annual precipitation. Trends towards foliar P deficiency were thus more marked when high N deposition coincided with climatic conditions favourable to plant production. Atmospheric N deposition was positively correlated with soil solution NO3- , SO42- , K+, P and Ca2+ concentrations, the soil solution NO3-:P ratio, total soil N and the total soil N:Olsen P ratio and was negatively correlated with soil Olsen P concentration. Despite these nutrient imbalances, during the period studied (1990-2006), N deposition was positively related with Pinus sylvestris absolute basal diameter (BD) growth, although only accounting for the 10% of the total variance. However, neither N deposition nor needle N concentration was related with relative annual BD growth. In contrast, needle P concentration was positively related with both absolute and relative annual BD growth. These results thus indicate a tendency of European P. sylvestris forests to store N in trees and soil in response to N deposition and unveil a trend towards increased nutrient losses in run-off as a consequence of higher soil solution N concentrations. Overall, the data show increasing ecosystem nutrient imbalances with increasingly limiting roles of P and other nutrients such as K in European P. sylvestris forests, especially in the centre of their distribution where higher levels of N deposition are observed. Thus, although the data show that N deposition has had an overall positive effect on P. sylvestris growth, the effect of continuous N deposition, associated with decreasing P and K and increasing N:P in leaves and in soil, may in the future become detrimental for the growth and competitive ability of P. sylvestris trees. © 2015 British Ecological Society.

Leer más

Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions

Sardans J., Janssens I.A., Alonso R., Veresoglou S.D., Rillig M.C., Sanders T.G.M., Carnicer J., Filella I., Farre-Armengol G., Penuelas J. (2015) Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions. Global Ecology and Biogeography. 24: 240-255.
Enlace
Doi: 10.1111/geb.12253

Resumen:

Aim: Plant elemental composition and stoichiometry are crucial for plant structure and function. We studied to what extent elemental stoichiometry in plants might be strongly related to environmental drivers and competition from coexisting species. Location: Europe. Methods: We analysed foliar N, P, K, Ca and Mg concentrations and their ratios among 50 species of European forest trees sampled in 5284 plots across Europe and their relationships with phylogeny, forest type, current climate and N deposition. Results: Phylogeny is strongly related to overall foliar elemental composition in European tree species. Species identity explained 56.7% of the overall foliar elemental composition and stoichiometry. Forest type and current climatic conditions also partially explained the differences in foliar elemental composition among species. In the same genus co-occurring species had overall higher differences in foliar elemental composition and stoichiometry than the non-co-occurring species. Main conclusions: The different foliar elemental compositions among species are related to phylogenetic distances, but they are also related to current climatic conditions, forest types, drivers of global change such as atmospheric N deposition, and to differences among co-occurring species as a probable consequence of niche specialization to reduce direct competition for the same resources. Different species have their own 'fixed' foliar elemental compositions but retain some degree of plasticity to the current climatic and competitive conditions. A wider set of elements beyond N and P better represent the biogeochemical niche and are highly sensitive to plant function. Foliar elemental composition can thus be useful for representing important aspects of plant species niches. © 2014 John Wiley & Sons Ltd.

Leer más

Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances

Carnicer J., Sardans J., Stefanescu C., Ubach A., Bartons M., Asensio D., Penuelas J. (2014) Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances. Journal of Plant Physiology. : 0-0.
Enlace
Doi: 10.1016/j.jplph.2014.07.022

Resumen:

Global change analyses usually consider biodiversity as a global asset that needs to be preserved. Biodiversity is frequently analysed mainly as a response variable affected by diverse environmental drivers. However, recent studies highlight that gradients of biodiversity are associated with gradual changes in the distribution of key dominant functional groups characterized by distinctive traits and stoichiometry, which in turn often define the rates of ecosystem processes and nutrient cycling. Moreover, pervasive links have been reported between biodiversity, food web structure, ecosystem function and species stoichiometry. Here we review current global stoichiometric gradients and how future distributional shifts in key functional groups may in turn influence basic ecosystem functions (production, nutrient cycling, decomposition) and therefore could exert a feedback effect on stoichiometric gradients. The C-N-P stoichiometry of most primary producers (phytoplankton, algae, plants) has been linked to functional trait continua (i.e. to major axes of phenotypic variation observed in inter-specific analyses of multiple traits). In contrast, the C-N-P stoichiometry of higher-level consumers remains less precisely quantified in many taxonomic groups. We show that significant links are observed between trait continua across trophic levels. In spite of recent advances, the future reciprocal feedbacks between key functional groups, biodiversity and ecosystem functions remain largely uncertain. The reported evidence, however, highlights the key role of stoichiometric traits and suggests the need of a progressive shift towards an ecosystemic and stoichiometric perspective in global biodiversity analyses.

Leer más

Evidence of current impact of climate change on life: A walk from genes to the biosphere

Penuelas J., Sardans J., Estiarte M., Ogaya R., Carnicer J., Coll M., Barbeta A., Rivas-Ubach A., Llusia J., Garbulsky M., Filella I., Jump A.S. (2013) Evidence of current impact of climate change on life: A walk from genes to the biosphere. Global Change Biology. 19: 2303-2338.
Enlace
Doi: 10.1111/gcb.12143

Resumen:

We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade-offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life. © 2013 John Wiley & Sons Ltd.

Leer más

Second report on climate change in Catalonia

Llebot JE, Carnicer J, Curiel J, Coll M, Díaz de Quijano M, Estiarte M, Filella I, Garbulsky M, Jump A, Llusià J, Ogaya R, Peñuelas J, Rico L, Rivas-Ubach A, Rutishauser T, Sardans J, Seco R, Silva J, Stefanescu C, Terradas J (2012) Second report on climate change in Catalonia. Executive summary. Institut d'Estudis Catalans. Generalitat de Catalunya. pp. 1-36. ISBN9788499650975.

Ecosystemic and biospheric interactions with carbon cycle

Peñuelas J, Filella I, Estiarte M, Ogaya R, Llusià J, Sardans J, Jump A, Carnicer J, Rico L, Garbulsky M, Coll M, Díaz de Quijano M, Seco R, Rivas-Ubach A, Kefauver S, Barbeta A, Achoategui A, Mejía-Chang M, Gallardo A, Farre G, Fernández M, Terradas J (2012) Ecosystemic and biospheric interactions with carbon cycle. In Carbon dioxide budget: processes and tendencies symposium. Universitat Politècnica de Catalunya, May 23-25.

Páginas