The consecutive disparity index, D: a measure of temporal variability in ecological studies

Fernández-Martínez M., Vicca S., Janssens I.A., Carnicer J., Martín-Vide J., Peñuelas J. (2018) The consecutive disparity index, D: a measure of temporal variability in ecological studies. Ecosphere. 9: 0-0.
Enlace
Doi: 10.1002/ecs2.2527

Resumen:

Temporal variability in ecological processes has attracted the attention of many disciplines in ecology, which has resulted in the development of several quantitative indices. The coefficient of variation (CV = standard deviation × mean−1) is still one of the most commonly used indices to assess temporal variability, despite being known to present several problems on its assessment (e.g., mean dependence or high sensitivity to rare events). The proportional variability (PV) index was developed to solve some of the CV's drawbacks, but, so far, no variability index takes into account the chronological order of the values in time series. In this paper, we introduce the consecutive disparity index (D), a temporal variability index that takes into account the chronological order of the values, assessing the average rate of change between consecutive values. We used computer simulations and empirical data for fruit production in trees, bird counts, and rodent captures to compare the behavior of D, PV, and CV under different scenarios. D was sensitive to changes in temporal autocorrelation in the negative autocorrelation range, and CV and PV were sensitive in the positive autocorrelation range despite not considering the chronological order of the values. The CV, however, was highly dependent on the mean of the time series, while D and PV were not. Our results demonstrate that, like PV, D solves many of the problems of the CV index while taking into account the chronological order of values in time series. The mathematical and statistical features of D make it a suitable index for analyzing temporal variability in a wide range of ecological studies. © 2018 The Authors.

Leer más

Shifting from a fertilization-dominated to a warming-dominated period

Peñuelas, J., Ciais, P., Canadell, J.G., Janssens, I.A., Fernández-Martínez, M., Carnicer, J., Obersteiner, M., Piao, S., Vautard, R., Sardans, J. (2017) Shifting from a fertilization-dominated to a warming-dominated period. Nature Ecology and Evolution. 1: 1438-1445.
Enlace
Doi: 10.1038/s41559-017-0274-8

Resumen:

Impacts of global change on Mediterranean forests and their services

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Barbeta, A., Achotegui-Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol, G., Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I., Camino-Serrano, M., Vives-Ingla, M., Stocker, B.D., Balzarolo, M., Guerrieri, R., Peaucelle, M., Marañón-Jiménez, S., Bórnez-Mejías, K., Mu, Z., Descals, A., Castellanos, A., Terradas, J. (2017) Impacts of global change on Mediterranean forests and their services. Forests. 8: 0-0.
Enlace
Doi: 10.3390/f8120463

Resumen:

Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Rico, L., Barbeta, A., Achotegui-Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol, G., Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I., Camino, M., Vives, M., Nadal-Sala, D., Sabaté, S., Gracia, C., Terradas, J. (2016) Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environmental and Experimental Botany. : 0-0.
Enlace
Doi: 10.1016/j.envexpbot.2017.05.012

Resumen:

Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain

Sardans J., Alonso R., Carnicer J., Fernández-Martínez M., Vivanco M.G., Peñuelas J. (2016) Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain. Perspectives in Plant Ecology, Evolution and Systematics. 18: 52-69.
Enlace
Doi: 10.1016/j.ppees.2016.01.001

Resumen:

Concentrations of nutrient elements in organisms and in the abiotic environment are key factors influencing ecosystem structure and function. We studied how concentrations and stoichiometries of nitrogen (N), phosphorus (P) and potassium (K) in leaves of forest trees are related to phylogeny and to environmental factors (mean annual precipitation, mean annual temperature, forest type, and nitrogen deposition). Using data for 4691 forest plots from across Spain, we tested the following hypotheses: (i) that foliar stoichiometries of forest trees are strongly influenced by phylogeny, (ii) that climate, as an important driver of plant uptake and nutrient use efficiency, affects foliar stoichiometry, (iii) that long-term loads of N influence N, P and K concentrations and ratios in natural vegetation, and (iv) that sympatric species are differentiated according to their foliar stoichiometry, thereby reducing the intensity of resource competition. Our analyses revealed that several factors contributed to interspecific variation in elemental composition and stoichiometry. These included phylogeny, forest type, climate, N deposition, and competitive neighborhood relationships (probably related to niche segregation effect).These findings support the notion that foliar elemental composition reflects adaptation both to regional factors such as climate and to local factors such as competition with co-occurring species. © 2016 Elsevier GmbH.

Leer más

Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: Relationships with climate, N deposition and tree growth

Sardans J., Alonso R., Janssens I.A., Carnicer J., Vereseglou S., Rillig M.C., Fernández-Martínez M., Sanders T.G.M., Peñuelas J. (2015) Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: Relationships with climate, N deposition and tree growth. Functional Ecology. : 0-0.
Enlace
Doi: 10.1111/1365-2435.12541

Resumen:

This study investigated the factors underlying the variability of needle and soil elemental composition and stoichiometry and their relationships with growth in Pinus sylvestris forests throughout the species' distribution in Europe by analysing data from 2245 forest stands. Needle N concentrations and N:P ratios were positively correlated with total atmospheric N deposition, whereas needle P concentrations were negatively correlated. These relationships were especially pronounced at sites where high levels of N deposition coincided with both higher mean annual temperature and higher mean annual precipitation. Trends towards foliar P deficiency were thus more marked when high N deposition coincided with climatic conditions favourable to plant production. Atmospheric N deposition was positively correlated with soil solution NO3- , SO42- , K+, P and Ca2+ concentrations, the soil solution NO3-:P ratio, total soil N and the total soil N:Olsen P ratio and was negatively correlated with soil Olsen P concentration. Despite these nutrient imbalances, during the period studied (1990-2006), N deposition was positively related with Pinus sylvestris absolute basal diameter (BD) growth, although only accounting for the 10% of the total variance. However, neither N deposition nor needle N concentration was related with relative annual BD growth. In contrast, needle P concentration was positively related with both absolute and relative annual BD growth. These results thus indicate a tendency of European P. sylvestris forests to store N in trees and soil in response to N deposition and unveil a trend towards increased nutrient losses in run-off as a consequence of higher soil solution N concentrations. Overall, the data show increasing ecosystem nutrient imbalances with increasingly limiting roles of P and other nutrients such as K in European P. sylvestris forests, especially in the centre of their distribution where higher levels of N deposition are observed. Thus, although the data show that N deposition has had an overall positive effect on P. sylvestris growth, the effect of continuous N deposition, associated with decreasing P and K and increasing N:P in leaves and in soil, may in the future become detrimental for the growth and competitive ability of P. sylvestris trees. © 2015 British Ecological Society.

Leer más