Isotopic methods for non-destructive assessment of carbon dynamics in shrublands under long-term climate change manipulation

Andresen L.C., Domínguez M.T., Reinsch S., Smith A.R., Schmidt I.K., Ambus P., Beier C., Boeckx P., Bol R., de Dato G., Emmett B.A., Estiarte M., Garnett M.H., Kröel-Dulay G., Mason S.L., Nielsen C.S., Peñuelas J., Tietema A. (2018) Isotopic methods for non-destructive assessment of carbon dynamics in shrublands under long-term climate change manipulation. Methods in Ecology and Evolution. 9: 866-880.
Enlace
Doi: 10.1111/2041-210X.12963

Resumen:

Long-term climate change experiments are extremely valuable for studying ecosystem responses to environmental change. Examination of the vegetation and the soil should be non-destructive to guarantee long-term research. In this paper, we review field methods using isotope techniques for assessing carbon dynamics in the plant–soil–air continuum, based on recent field experience and examples from a European climate change manipulation network. Eight European semi-natural shrubland ecosystems were exposed to warming and drought manipulations. One field site was additionally exposed to elevated atmospheric CO2. We discuss the isotope methods that were used across the network to evaluate carbon fluxes and ecosystem responses, including: (1) analysis of the naturally rare isotopes of carbon (13C and 14C) and nitrogen (15N); (2) use of in situ pulse labelling with 13CO2, soil injections of 13C- and 15N-enriched substrates, or continuous labelling by free air carbon dioxide enrichment (FACE) and (3) manipulation of isotopic composition of soil substrates (14C) in laboratory-based studies. The natural 14C signature of soil respiration gave insight into a possible long-term shift in the partitioning between the decomposition of young and old soil carbon sources. Contrastingly, the stable isotopes 13C and 15N were used for shorter-term processes, as the residence time in a certain compartment of the stable isotope label signal is limited. The use of labelled carbon-compounds to study carbon mineralisation by soil micro-organisms enabled to determine the long-term effect of climate change on microbial carbon uptake kinetics and turnover. Based on the experience with the experimental work, we provide recommendations for the application of the reviewed methods to study carbon fluxes in the plant–soil–air continuum in climate change experiments. 13C-labelling techniques exert minimal physical disturbances, however, the dilution of the applied isotopic signal can be challenging. In addition, the contamination of the field site with excess 13C or 14C can be a problem for subsequent natural abundance (14C and 13C) or label studies. The use of slight changes in carbon and nitrogen natural abundance does not present problems related to potential dilution or contamination risks, but the usefulness depends on the fractionation rate of the studied processes. © 2018 The Authors. Methods in Ecology and Evolution © 2018 British Ecological Society

Leer más

Erratum to: Crowther et al. reply (Nature, (2018), 554, 7693, (E7-E8), 10.1038/nature25746)

Crowther T.W., Machmuller M.B., Carey J.C., Allison S.D., Blair J.M., Bridgham S.D., Burton A.J., Dijkstra F.A., Elberling B., Estiarte M., Larsen K.S., Laudon H., Lupascu M., Marhan S., Mohan J., Niu S., Peñuelas J.J., Schmidt I.K., Templer P.H., Kröel-Dulay G., Frey S., Bradford M.A. (2018) Erratum to: Crowther et al. reply (Nature, (2018), 554, 7693, (E7-E8), 10.1038/nature25746). Nature. 560: 0-0.
Enlace
Doi: 10.1038/s41586-018-0192-1

Resumen:

In this Brief Communications Arising Reply, the affiliation for author P. H. Templer was incorrectly listed as ‘Department of Ecology & Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA’ instead of ‘Department of Biology, Boston University, Boston, Massachusetts 02215, USA’. This has been corrected online. © 2018, Macmillan Publishers Ltd., part of Springer Nature.

Leer más

BioTIME: A database of biodiversity time series for the Anthropocene

Dornelas M., Antão L.H., Moyes F., Bates A.E., Magurran A.E., Adam D., Akhmetzhanova A.A., Appeltans W., Arcos J.M., Arnold H., Ayyappan N., Badihi G., Baird A.H., Barbosa M., Barreto T.E., Bässler C., Bellgrove A., Belmaker J., Benedetti-Cecchi L., Bett B.J., Bjorkman A.D., Błażewicz M., Blowes S.A., Bloch C.P., Bonebrake T.C., Boyd S., Bradford M., Brooks A.J., Brown J.H., Bruelheide H., Budy P., Carvalho F., Castañeda-Moya E., Chen C.A., Chamblee J.F., Chase T.J., Siegwart Collier L., Collinge S.K., Condit R., Cooper E.J., Cornelissen J.H.C., Cotano U., Kyle Crow S., Damasceno G., Davies C.H., Davis R.A., Day F.P., Degraer S., Doherty T.S., Dunn T.E., Durigan G., Duffy J.E., Edelist D., Edgar G.J., Elahi R., Elmendorf S.C., Enemar A., Ernest S.K.M., Escribano R., Estiarte M., Evans B.S., Fan T.-Y., Turini Farah F., Loureiro Fernandes L., Farneda F.Z., Fidelis A., Fitt R., Fosaa A.M., Daher Correa Franco G.A., Frank G.E., Fraser W.R., García H., Cazzolla Gatti R., Givan O., Gorgone-Barbosa E., Gould W.A., Gries C., Grossman G.D., Gutierréz J.R., Hale S., Harmon M.E., Harte J., Haskins G., Henshaw D.L., Hermanutz L., Hidalgo P., Higuchi P., Hoey A., Van Hoey G., Hofgaard A., Holeck K., Hollister R.D., Holmes R., Hoogenboom M., Hsieh C.-H., Hubbell S.P., Huettmann F., Huffard C.L., Hurlbert A.H., Macedo Ivanauskas N., Janík D., Jandt U., Jażdżewska A., Johannessen T., Johnstone J., Jones J., Jones F.A.M., Kang J., Kartawijaya T., Keeley E.C., Kelt D.A., Kinnear R., Klanderud K., Knutsen H., Koenig C.C., Kortz A.R., Král K., Kuhnz L.A., Kuo C.-Y., Kushner D.J., Laguionie-Marchais C., Lancaster L.T., Min Lee C., Lefcheck J.S., Lévesque E., Lightfoot D., Lloret F., Lloyd J.D., López-Baucells A., Louzao M., Madin J.S., Magnússon B., Malamud S., Matthews I., McFarland K.P., McGill B., McKnight D., McLarney W.O., Meador J., Meserve P.L., Metcalfe D.J., Meyer C.F.J., Michelsen A., Milchakova N., Moens T., Moland E., Moore J., Mathias Moreira C., Müller J., Murphy G., Myers-Smith I.H., Myster R.W., Naumov A., Neat F., Nelson J.A., Paul Nelson M., Newton S.F., Norden N., Oliver J.C., Olsen E.M., Onipchenko V.G., Pabis K., Pabst R.J., Paquette A., Pardede S., Paterson D.M., Pélissier R., Peñuelas J., Pérez-Matus A., Pizarro O., Pomati F., Post E., Prins H.H.T., Priscu J.C., Provoost P., Prudic K.L., Pulliainen E., Ramesh B.R., Mendivil Ramos O., Rassweiler A., Rebelo J.E., Reed D.C., Reich P.B., Remillard S.M., Richardson A.J., Richardson J.P., van Rijn I., Rocha R., Rivera-Monroy V.H., Rixen C., Robinson K.P., Ribeiro Rodrigues R., de Cerqueira Rossa-Feres D., Rudstam L., Ruhl H., Ruz C.S., Sampaio E.M., Rybicki N., Rypel A., Sal S., Salgado B., Santos F.A.M., Savassi-Coutinho A.P., Scanga S., Schmidt J., Schooley R., Setiawan F., Shao K.-T., Shaver G.R., Sherman S., Sherry T.W., Siciński J., Sievers C., da Silva A.C., Rodrigues da Silva F., Silveira F.L., Slingsby J., Smart T., Snell S.J., Soudzilovskaia N.A., Souza G.B.G., Maluf Souza F., Castro Souza V., Stallings C.D., Stanforth R., Stanley E.H., Mauro Sterza J., Stevens M., Stuart-Smith R., Rondon Suarez Y., Supp S., Yoshio Tamashiro J., Tarigan S., Thiede G.P., Thorn S., Tolvanen A., Teresa Zugliani Toniato M., Totland Ø., Twilley R.R., Vaitkus G., Valdivia N., Vallejo M.I., Valone T.J., Van Colen C., Vanaverbeke J., Venturoli F., Verheye H.M., Vianna M., Vieira R.P., Vrška T., Quang Vu C., Van Vu L., Waide R.B., Waldock C., Watts D., Webb S., Wesołowski T., White E.P., Widdicombe C.E., Wilgers D., Williams R., Williams S.B., Williamson M., Willig M.R., Willis T.J., Wipf S., Woods K.D., Woehler E.J., Zawada K., Zettler M.L. (2018) BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography. 27: 760-786.
Enlace
Doi: 10.1111/geb.12729

Resumen:

Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2). Time period and grain: BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. Software format:.csv and.SQL. © 2018 The Authors. Global Ecology and Biogeography Published by John Wiley & Sons Ltd

Leer más

A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean Region: Beyond drought effects

Doblas-Miranda, E., Alonso, R., Arnan, X., Bermejo, V., Brotons, L., de las Heras, J., Estiarte, M., Hódar, J.A., Llorens, P., Lloret, F., López-Serrano, F.R., Martínez-Vilalta, J., Moya, D., Peñuelas, J., Pino, J., Rodrigo, A., Roura-Pascual, N., Valladares, F., Vilà, M., Zamora, R., Retana, J. (2017) A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean Region: Beyond drought effects. Global and Planetary Change. 148: 42-54.
Enlace
Doi: 10.1016/j.gloplacha.2016.11.012

Resumen:

Shift in community structure in an early-successional Mediterranean shrubland driven by long-term experimental warming and drought and natural extreme droughts

Liu, D., Estiarte, M., Ogaya, R., Yang, X., Peñuelas, J. (2017) Shift in community structure in an early-successional Mediterranean shrubland driven by long-term experimental warming and drought and natural extreme droughts. Global Change Biology. : 0-0.
Enlace
Doi: 10.1111/gcb.13763

Resumen:

Species selection under long-term experimental warming and drought explained by climatic distributions

Liu, D., Peñuelas, J., Ogaya, R., Estiarte, M., Tielbörger, K., Slowik, F., Yang, X., Bilton, M.C. (2017) Species selection under long-term experimental warming and drought explained by climatic distributions. New Phytologist. : 0-0.
Enlace
Doi: 10.1111/nph.14925

Resumen:

Impacts of global change on Mediterranean forests and their services

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Barbeta, A., Achotegui-Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol, G., Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I., Camino-Serrano, M., Vives-Ingla, M., Stocker, B.D., Balzarolo, M., Guerrieri, R., Peaucelle, M., Marañón-Jiménez, S., Bórnez-Mejías, K., Mu, Z., Descals, A., Castellanos, A., Terradas, J. (2017) Impacts of global change on Mediterranean forests and their services. Forests. 8: 0-0.
Enlace
Doi: 10.3390/f8120463

Resumen:

Shrubland primary production and soil respiration diverge along European climate gradient

Reinsch, S., Koller, E., Sowerby, A., De Dato, G., Estiarte, M., Guidolotti, G., Kovács-Láng, E., Kröel-Dulay, G., Lellei-Kovács, E., Larsen, K.S., Liberati, D., Peñuelas, J., Ransijn, J., Robinson, D.A., Schmidt, I.K., Smith, A.R., Tietema, A., Dukes, J.S., Beier, C., Emmett, B.A. (2017) Shrubland primary production and soil respiration diverge along European climate gradient. Scientific Reports. 7: 0-0.
Enlace
Doi: 10.1038/srep43952

Resumen:

Shifting Impacts of Climate Change: Long-Term Patterns of Plant Response to Elevated CO<inf>2</inf>, Drought, and Warming Across Ecosystems

Andresen, L.C., Müller, C., de Dato, G., Dukes, J.S., Emmett, B.A., Estiarte, M., Jentsch, A., Kröel-Dulay, G., Lüscher, A., Niu, S., Peñuelas, J., Reich, P.B., Reinsch, S., Ogaya, R., Schmidt, I.K., Schneider, M.K., Sternberg, M., Tietema, A., Zhu, K., Bilton, M.C. (2016) Shifting Impacts of Climate Change: Long-Term Patterns of Plant Response to Elevated CO2, Drought, and Warming Across Ecosystems. Advances in Ecological Research. : 0-0.
Enlace
Doi: 10.1016/bs.aecr.2016.07.001

Resumen:

Temperature response of soil respiration largely unaltered with experimental warming

Carey, J.C., Tang, J., Templer, P.H., Kroeger, K.D., Crowther, T.W., Burton, A.J., Dukes, J.S., Emmett, B., Frey, S.D., Heskel, M.A., Jiang, L., Machmuller, M.B., Mohan, J., Panetta, A.M., Reich, P.B., Reinschj, S., Wang, X., Allison, S.D., Bamminger, C., Bridgham, S., Collins, S.L., De Dato, G., Eddy, W.C., Enquist, B.J., Estiarte, M., Harte, J., Henderson, A., Johnson, B.R., Larsen, K.S., Luo, Y., Marhan, S., Melillo, J.M., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Rastetter, E., Reinmann, A.B., Reynolds, L.L., Schmidt, I.K., Shaver, G.R., Strong, A.L., Suseela, V., Tietema, A. (2016) Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences of the United States of America. 113: 13797-13802.
Enlace
Doi: 10.1073/pnas.1605365113

Resumen:

Páginas