Pacific and Atlantic oceanic anomalies and their interaction with rainfall and fire in Bolivian biomes for the period 1992–2012

Roman-Cuesta R.M., Rejalaga-Noguera L., Pinto-Garcia C., Retana J. (2014) Pacific and Atlantic oceanic anomalies and their interaction with rainfall and fire in Bolivian biomes for the period 1992–2012. Climatic Change. : 0-0.
Enlace
Doi: 10.1007/s10584-014-1246-5

Resumen:

Bolivia is located at the crossroad of the major climatic influences of Northern and Southern-South America, which turns this country into a natural laboratory to investigate the interactions between ocean-climate and fire variability. We chose two oceanic indices: MEI (multivariate ENSO Index) and AMO (Atlantic Multidecadal Oscillation) to select the three most representative years for four oceanic conditions: El Niño, La Niña, AMO, and standard years (understood as years with little ocean influences), for the period 1992–2012. We investigated how i) rainfall (dry vs wet seasons) and ii) fire responded in five Bolivian biomes (Tropical Moist Forests, Tropical Dry Forests, Tropical Grasslands, Tropical Montane, and Seasonally Flooded ecosystems) under these oceanic conditions. Bolivia showed a strong rainfall increase in El Niño years in both seasons (wet/dry), while AMO showed the strongest droughts in both seasons. La Niña showed a bipolar response with rainfall increases in the wet season and a very marked rainfall decrease in the dry season. Drought significantly increased fire numbers in AMO years, being the most significant fire condition and suggesting a larger fire influence of the Atlantic than the Pacific at the national level. Surprisingly, the amount of fire was very large under normal years (STD) and similar to fire levels under La Niña, suggesting generalized fire conditions in the country, except for El Niño years that bring rainfall excess and little fire. The most fire-affected biomes were the seasonally flooded and dry forests, followed by the grassland/savannah biome. Montane areas showed the least fire, but satellite fire omission is well known in the Andean region.

Leer más