A MODIS photochemical reflectance index (PRI) as an estimator of isoprene emissions in a temperate deciduous forest

Filella I., Zhang C., Seco R., Potosnak M., Guenther A., Karl T., Gamon J., Pallardy S., Gu L., Kim S., Balzarolo M., Fernandez-Martinez M., Penuelas J. (2018) A MODIS photochemical reflectance index (PRI) as an estimator of isoprene emissions in a temperate deciduous forest. Remote Sensing. 10: 0-0.
Enlace
Doi: 10.3390/rs10040557

Resumen:

The quantification of isoprene and monoterpene emissions at the ecosystem level with available models and field measurements is not entirely satisfactory. Remote-sensing techniques can extend the spatial and temporal assessment of isoprenoid fluxes. Detecting the exchange of biogenic volatile organic compounds (BVOCs) using these techniques is, however, a very challenging goal. Recent evidence suggests that a simple remotely sensed index, the photochemical reflectance index (PRI), which is indicative of light-use efficiency, relative pigment levels and excess reducing power, is a good indirect estimator of foliar isoprenoid emissions. We tested the ability of PRI to assess isoprenoid fluxes in a temperate deciduous forest in central USA throughout the entire growing season and under moderate and extreme drought conditions. We compared PRI time series calculated with MODIS bands to isoprene emissions measured with eddy covariance. MODIS PRI was correlated with isoprene emissions for most of the season, until emissions peaked. MODIS PRI was also able to detect the timing of the annual peak of emissions, even when it was advanced in response to drought conditions. PRI is thus a promising index to estimate isoprene emissions when it is complemented by information on potential emission. It may also be used to further improve models of isoprene emission under drought and other stress conditions. Direct estimation of isoprene emission by PRI is, however, limited, because PRI estimates LUE, and the relationship between LUE and isoprene emissions can be modified by severe stress conditions. © 2018 by the authors.

Leer más

Impacts of global change on Mediterranean forests and their services

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Barbeta, A., Achotegui-Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol, G., Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I., Camino-Serrano, M., Vives-Ingla, M., Stocker, B.D., Balzarolo, M., Guerrieri, R., Peaucelle, M., Marañón-Jiménez, S., Bórnez-Mejías, K., Mu, Z., Descals, A., Castellanos, A., Terradas, J. (2017) Impacts of global change on Mediterranean forests and their services. Forests. 8: 0-0.
Enlace
Doi: 10.3390/f8120463

Resumen:

Remotely-sensed detection of effects of extreme droughts on gross primary production

Vicca S., Balzarolo M., Filella I., Granier A., Herbst M., Knohl A., Longdoz B., Mund M., Nagy Z., Pintér K., Rambal S., Verbesselt J., Verger A., Zeileis A., Zhang C., Peñuelas J. (2016) Remotely-sensed detection of effects of extreme droughts on gross primary production. Scientific Reports. 6: 0-0.
Enlace
Doi: 10.1038/srep28269

Resumen:

Severe droughts strongly impact photosynthesis (GPP), and satellite imagery has yet to demonstrate its ability to detect drought effects. Especially changes in vegetation functioning when vegetation state remains unaltered (no browning or defoliation) pose a challenge to satellite-derived indicators. We evaluated the performance of different satellite indicators to detect strong drought effects on GPP in a beech forest in France (Hesse), where vegetation state remained largely unaffected while GPP decreased substantially. We compared the results with three additional sites: a Mediterranean holm oak forest (Puéchabon), a temperate beech forest (Hainich), and a semi-arid grassland (Bugacpuszta). In Hesse, a three-year reduction in GPP following drought was detected only by the Enhanced Vegetation Index (EVI). The Photochemical Reflectance Index (PRI) also detected this drought effect, but only after normalization for absorbed light. In Puéchabon normalized PRI outperformed the other indicators, while the short-term drought effect in Hainich was not detected by any tested indicator. In contrast, most indicators, but not PRI, captured the drought effects in Bugacpuszta. Hence, PRI improved detection of drought effects on GPP in forests and we propose that PRI normalized for absorbed light is considered in future algorithms to estimate GPP from space.

Leer más