Non-structural carbohydrate dynamics associated with drought-induced die-off in woody species of a shrubland community

Lloret F., Sapes G., Rosas T., Galiano L., Saura-Mas S., Sala A., Martínez-Vilalta J. (2018) Non-structural carbohydrate dynamics associated with drought-induced die-off in woody species of a shrubland community. Annals of Botany. 121: 1383-1396.
Enlace
Doi: 10.1093/aob/mcy039

Resumen:

Background and Aims The relationship between plant carbon economy and drought responses of co-occurring woody species can be assessed by comparing carbohydrate (C) dynamics following drought and rain periods, relating these dynamics to species' functional traits. We studied nine woody species coexisting in a continental Mediterranean shrubland that experienced severe drought effects followed by rain. Methods We measured total non-structural carbohydrates (NSC) and soluble sugars (SS) in roots and stems during drought and after an autumn rain pulse in plants exhibiting leaf loss and in undefoliated ones. We explored whether their dynamics were related to foliage recovery and functional traits (height [H], specific leaf area [SLA], wood density [WD]). Key Results During drought, NSC concentrations were overall lower in stems and roots of plants experiencing leaf loss, while SS decreases were smaller. Roots had higher NSC concentrations than stems. After the rain, NSC concentrations continued to decrease, while SS increased. Green foliage recovered after rain, particularly in plants previously experiencing higher leaf loss, independently of NSC concentrations during drought. Species with lower WD tended to have more SS during drought and lower SS increases after rain. In low-WD species, plants with severe leaf loss had lower NSC relative to undefoliated ones. No significant relationship was found between H or SLA and C content or dynamics. Conclusions Our community-level study reveals that, while responses were species-specific, C stocks overall diminished in plants affected by prolonged drought and did not increase after a pulse of seasonal rain. Dynamics were faster for SS than NSC. We found limited depletion of SS, consistent with their role in basal metabolic, transport and signalling functions. In a scenario of increased drought under climate change, NSC stocks in woody plants are expected to decrease differentially in coexisting species, with potential implications for their adaptive abilities and community dynamics. © The Author(s) 2018.

Leer más

Comparative drought responses of Quercus ilex L. and Pinus sylvestris L. In a montane forest undergoing a vegetation shift

Aguade D., Poyatos R., Rosas T., Martinez-Vilalta J. (2015) Comparative drought responses of Quercus ilex L. and Pinus sylvestris L. In a montane forest undergoing a vegetation shift. Forests. 6: 2505-2529.
Enlace
Doi: 10.3390/f6082505

Resumen:

Different functional and structural strategies to cope with water shortage exist both within and across plant communities. The current trend towards increasing drought in many regions could drive some species to their physiological limits of drought tolerance, potentially leading to mortality episodes and vegetation shifts. In this paper, we study the drought responses of Quercus ilex and Pinus sylvestris in a montane Mediterranean forest where the former species is replacing the latter in association with recent episodes of drought-induced mortality. Our aim was to compare the physiological responses to variations in soil water content (SWC) and vapor pressure deficit (VPD) of the two species when living together in a mixed stand or separately in pure stands, where the canopies of both species are completely exposed to high radiation and VPD. P. sylvestris showed typical isohydric behavior, with greater losses of stomatal conductance with declining SWC and greater reductions of stored non-structural carbohydrates during drought, consistent with carbon starvation being an important factor in the mortality of this species. On the other hand, Q. ilex trees showed a more anisohydric behavior, experiencing more negative water potentials and higher levels of xylem embolism under extreme drought, presumably putting them at higher risk of hydraulic failure. In addition, our results show relatively small changes in the physiological responses of Q. ilex in mixed vs. pure stands, suggesting that the current replacement of P. sylvestris by Q. ilex will continue. © 2015 by the authors.

Leer más

Non-structural carbohydrates in woody plants compared among laboratories

Quentin A.G., Pinkard E.A., Ryan M.G., Tissue D.T., Baggett L.S., Adams H.D., Maillard P., Marchand J., Landhäusser S.M., Lacointe A., Gibon Y., Anderegg W.R.L., Asao S., Atkin O.K., Bonhomme M., Claye C., Chow P.S., Clément-Vidal A., Davies N.W., Dickman L.T., Dumbur R., Ellsworth D.S., Falk K., Galiano L., Grünzweig J.M., Hartmann H., Hoch G., Hood S., Jones J.E., Koike T., Kuhlmann I., Lloret F., Maestro M., Mansfield S.D., Martínez-Vilalta J., Maucourt M., McDowell N.G., Moing A., Muller B., Nebauer S.G., Niinemets U., Palacio S., Piper F., Raveh E., Richter A., Rolland G., Rosas T., Joanis B.S., Sala A., Smith R.A., Sterck F., Stinziano J.R., Tobias M., Unda F., Watanabe M., Way D.A., Weerasinghe L.K., Wild B., Wiley E., Woodruff D.R. (2015) Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiology. 35: 1146-1165.
Enlace
Doi: 10.1093/treephys/tpv073

Resumen:

Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g-1 for soluble sugars, 6-533 (mean = 94) mg g-1 for starch and 53-649 (mean = 153) mg g-1 for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R2 = 0.05-0.12 for soluble sugars, 0.10-0.33 for starch and 0.01-0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g-1 for total NSC, compared with the range of laboratory estimates of 596 mg g-1. Laboratories were reasonably consistent in their ranks of estimates among tissues for starch (r = 0.41-0.91), but less so for total NSC (r = 0.45-0.84) and soluble sugars (r = 0.11-0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods. © The Author 2015.

Leer más

Dynamics of non-structural carbohydrates in three mediterranean woody species following long-term experimental drought

Rosas T., Galiano L., Ogaya R., Penuelas J., Martinez-Vilalta J. (2013) Dynamics of non-structural carbohydrates in three mediterranean woody species following long-term experimental drought. Frontiers in Plant Science. 4: 0-0.
Enlace
Doi: 10.3389/fpls.2013.00400

Resumen:

Stored non-structural carbohydrates (NSC) have been proposed as a key determinant of drought resistance in plants. However, the evidence for this role is controversial, as it comes mostly from observational, short-term studies. Here, we take advantage of a long-term experimental throughfall reduction to elucidate the response of NSC to increased drought 14 years after the beginning of the treatment in three Mediterranean resprouter trees (Quercus ilex L., Arbutus unedo L. and Phillyrea latifclia L.). In addition, we selected 20. Q. ilex individuals outside the experimental plots to directly assess the relationship between defoliation and NSC at the individual level. We measured the seasonal course of NSC concentrations in leaves, branches and lignotuber in late winter, late spring, summer, and autumn 2012. Total concentrations of NSC were highest in the lignotuber for all species. In the long-term drought experiment we found significant depletion in concentrations of total NSC in treatment plots only in the lignotuber of A. unedo. At the same time, A. unedo was the only species showing a significant reduction in BAI under the drought treatment during the 14 years of the experiment. By contrast, Q. ilex just reduced stem growth only during the first 4 years of treatment and P latifclia remained unaffected over the whole study period. However, we found a clear association between the concentrations of NSC and defoliation in Q. ilex individuals sampled outside the experimental plots, with lower total concentrations of NSC and lower proportion of starch in defoliated individuals. Taken together, our results suggest that stabilizing processes, probably at the stand level, may have been operating in the long-term to mitigate any impact of drought on NSC levels, and highlight the necessity to incorporate long-term experimental studies of plant responses to drought. © 2013 Rosas, Galiano, Ogaya, Peñuelas and Martínez-Vilalta.

Leer más