Thirsty tree roots exude more carbon

Preece C., Farré-Armengol G., Llusià J., Peñuelas J. (2018) Thirsty tree roots exude more carbon. Tree Physiology. 38: 690-695.
Enlace
Doi: 10.1093/treephys/tpx163

Resumen:

Root exudation is an important input of carbon into soils and affects plant and soil communities, but little is known about the effect of climatic factors such as drought on exudation, and its ability to recover. We studied the impact of increasing drought on root exudation and its subsequent recovery in the Mediterranean tree species Quercus ilex L. in a greenhouse study by measuring the amount of total organic carbon in exudates. The amount of exudation per unit root area increased with drought duration and was 21% higher under the most extreme drought scenario compared with the non-droughted control. The amount of root exudation did not differ between the treatments following 6 weeks of re-watering, indicating a strong capacity for recovery in this species. We concluded that drought could affect the amount of root exudation, which could in turn have a large impact on microbial activity in the rhizosphere, and alter these microbial communities, at least in the short term. This tree species may be able to return to normal levels of root exudation after a drought event, but long-term exudate-mediated impacts on Mediterranean forest soils may be an unforeseen effect of drought. © The Author(s) 2018. Published by Oxford University Press. All rights reserved.

Leer más

β-Ocimene, a Key Floral and Foliar Volatile Involved in Multiple Interactions between Plants and Other Organisms

Farré-Armengol G., Filella I., Llusià J., Peñuelas J. (2017) β-Ocimene, a Key Floral and Foliar Volatile Involved in Multiple Interactions between Plants and Other Organisms. Molecules (Basel, Switzerland). 22: 0-0.
Enlace
Doi: 10.3390/molecules22071148

Resumen:

β-Ocimene is a very common plant volatile released in important amounts from the leaves and flowers of many plant species. This acyclic monoterpene can play several biological functions in plants, by potentially affecting floral visitors and also by mediating defensive responses to herbivory. The ubiquity and high relative abundance of β-ocimene in the floral scents of species from most plant families and from different pollination syndromes (ranging from generalism to specialism) strongly suggest that this terpenoid may play an important role in the attraction of pollinators to flowers. We compiled abundant evidence from published studies that supports β-ocimene as a generalist attractant of a wide spectrum of pollinators. We found no studies testing behavioural responses of pollinators to β-ocimene, that could directly demonstrate or deny the function of β-ocimene in pollinator attraction; but several case studies support that the emissions of β-ocimene in flowers of different species follow marked temporal and spatial patterns of emission, which are typical from floral volatile organic compound (VOC) emissions that are involved in pollinator attraction. Furthermore, important β-ocimene emissions are induced from vegetative plant tissues after herbivory in many species, which have relevant functions in the establishment of tritrophic interactions. We thus conclude that β-ocimene is a key plant volatile with multiple relevant functions in plants, depending on the organ and the time of emission. Experimental behavioural studies on pure β-ocimene conducted with pollinating insects will be necessary to prove the assumptions made here.

Leer más

Impacts of global change on Mediterranean forests and their services

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Barbeta, A., Achotegui-Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol, G., Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I., Camino-Serrano, M., Vives-Ingla, M., Stocker, B.D., Balzarolo, M., Guerrieri, R., Peaucelle, M., Marañón-Jiménez, S., Bórnez-Mejías, K., Mu, Z., Descals, A., Castellanos, A., Terradas, J. (2017) Impacts of global change on Mediterranean forests and their services. Forests. 8: 0-0.
Enlace
Doi: 10.3390/f8120463

Resumen:

Assessment of the response of photosynthetic activity of Mediterranean evergreen oaks to enhanced drought stress and recovery by using PRI and R690/R630

Zhang, C., Preece, C., Filella, I., Farré-Armengol, G., Peñuelas, J. (2017) Assessment of the response of photosynthetic activity of Mediterranean evergreen oaks to enhanced drought stress and recovery by using PRI and R690/R630. Forests. 8: 0-0.
Enlace
Doi: 10.3390/f8100386

Resumen:

Bidirectional Interaction between Phyllospheric Microbiotas and Plant Volatile Emissions

Farré-Armengol, G., Filella, I., Llusia, J., Peñuelas, J. (2016) Bidirectional Interaction between Phyllospheric Microbiotas and Plant Volatile Emissions. Trends in Plant Science. 21: 854-860.
Enlace
Doi: 10.1016/j.tplants.2016.06.005

Resumen:

Shifts in plant foliar and floral metabolomes in response to the suppression of the associated microbiota

Gargallo-Garriga A., Sardans J., Pérez-Trujillo M., Guenther A., Llusià J., Rico L., Terradas J., Farré-Armengol G., Filella I., Parella T., Peñuelas J. (2016) Shifts in plant foliar and floral metabolomes in response to the suppression of the associated microbiota. BMC Plant Biology. 16: 0-0.
Enlace
Doi: 10.1186/s12870-016-0767-7

Resumen:

Background: The phyllospheric microbiota is assumed to play a key role in the metabolism of host plants. Its role in determining the epiphytic and internal plant metabolome, however, remains to be investigated. We analyzed the Liquid Chromatography-Mass Spectrometry (LC-MS) profiles of the epiphytic and internal metabolomes of the leaves and flowers of Sambucus nigra with and without external antibiotic treatment application. Results: The epiphytic metabolism showed a degree of complexity similar to that of the plant organs. The suppression of microbial communities by topical applications of antibiotics had a greater impact on the epiphytic metabolome than on the internal metabolomes of the plant organs, although even the latter changed significantly both in leaves and flowers. The application of antibiotics decreased the concentration of lactate in both epiphytic and organ metabolomes, and the concentrations of citraconic acid, acetyl-CoA, isoleucine, and several secondary compounds such as terpenes and phenols in the epiphytic extracts. The metabolite pyrogallol appeared in the floral epiphytic community only after the treatment. The concentrations of the amino acid precursors of the ketoglutarate-synthesis pathway tended to decrease in the leaves and to increase in the foliar epiphytic extracts. Conclusions: These results suggest that anaerobic and/or facultative anaerobic bacteria were present in high numbers in the phyllosphere and in the apoplasts of S. nigra. The results also show that microbial communities play a significant role in the metabolomes of plant organs and could have more complex and frequent mutualistic, saprophytic, and/or parasitic relationships with internal plant metabolism than currently assumed. © 2016 Gargallo-Garriga et al.

Leer más

Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Rico, L., Barbeta, A., Achotegui-Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol, G., Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I., Camino, M., Vives, M., Nadal-Sala, D., Sabaté, S., Gracia, C., Terradas, J. (2016) Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environmental and Experimental Botany. : 0-0.
Enlace
Doi: 10.1016/j.envexpbot.2017.05.012

Resumen:

Optimum temperature for floral terpene emissions tracks the mean temperature of the flowering season

Farre-Armengol G., Filella I., Llusia J., Niinemets U., Penuelas J. (2015) Optimum temperature for floral terpene emissions tracks the mean temperature of the flowering season. Functional Plant Biology. 42: 851-857.
Enlace
Doi: 10.1071/FP14279

Resumen:

Emissions of volatiles from leaves exhibit temperature dependence on maximums, but the optimum temperatures for the release of floral volatiles and the mechanism(s) of optimising these emissions have not been determined. We hypothesised that flowers have an optimum temperature for the emission of volatiles and, because the period of flowering varies highly among species, that this optimum is adapted to the temperatures prevailing during flowering. To test these hypotheses, we characterised the temperature responses of floral terpene emissions of diverse widespread Mediterranean plant species flowering in different seasons by using dynamic headspace sampling and analysis with GC-MS. The floral emissions of terpenes across species exhibited maximums at the temperatures corresponding to the season of flowering, with the lowest optimal temperatures observed in winter-flowering and the highest in summer-flowering species. These trends were valid for emissions of both total terpenes and the various terpene compounds. The results show that the optimum temperature of floral volatile emissions scales with temperature at flowering, and suggest that this scaling is the outcome of physiological adaptations of the biosynthetic or emission mechanisms of flowers. © CSIRO 2015.

Leer más

Relationships among floral VOC emissions, floral rewards and visits of pollinators in five plant species of a Mediterranean shrubland

Farre-Armengol G., Filella I., Llusia J., Penuelas J. (2015) Relationships among floral VOC emissions, floral rewards and visits of pollinators in five plant species of a Mediterranean shrubland. Plant Ecology and Evolution. 148: 90-99.
Enlace
Doi: 10.5091/plecevo.2015.963

Resumen:

Background and aims–In plant-pollinator communities seasonal changes in the abundance of pollinators lead to seasonal changes in competition among flowering plants for their services. Here we address the following question: Do flowers of a given species produce more olfactory signals (emissions of volatile compounds) and rewards (nectar and pollen) during the phase(s) of the flowering period within which they have to maximally compete with the signals and rewards of other co-flowering species in the community, compared to the amount of signals and rewards produced during the period(s) with less floral competition? Methods–We analysed the floral emission rates of biogenic volatile organic compounds by gas chromatography and proton transfer reaction mass spectrometry, the visitation rates of pollinators, and the availability of nectar and pollen during the flowering periods of five species to test whether floral rewards and signals would decrease with an increase in pollinator visitation rates during late spring and early summer, i.e. coinciding with decreasing competitive pressure for the services of pollinators. Key results–The results indicate that phenological patterns in the production of rewards are only present at the species level in those species with long flowering periods or with matching periods of changes in pollinator populations. The capacity of emitting isoprenoids and oxidised volatile organic compounds, however, did not present significant patterns during the flowering period in any of the five species studied. Conclusions–The results support the hypothesis of a decreasing competitive pressure for the attraction of pollinators that may drive a decrease in floral investment in rewards but not an accompanying decrease of the capacity of emitting volatile olfactory signals in a species with long flowering period. However, the negative correlation between nectar production and visitation rates may be reinforced by the opposite responses of these variables to climatic conditions. This fact makes difficult to discern possible evolutionary forces tending to decrease rewards from plastic responses to changing environmental conditions in that part of the flowering period in which pollinator visitation rates are higher. © 2015 Botanic Garden Meise and Royal Botanical Society of Belgium.

Leer más

Pollination mode determines floral scent

Farre-Armengol G., Filella I., Llusia J., Penuelas J. (2015) Pollination mode determines floral scent. Biochemical Systematics and Ecology. 61: 44-53.
Enlace
Doi: 10.1016/j.bse.2015.05.007

Resumen:

The main objective of this study is to determine if the pollination vector influences the potential floral emissions of flowering plants. We hypothesized that flowers pollinated by insects would emit significantly higher amounts of volatile organic compounds (VOCs) and would present a higher diversity of these compounds than flowers pollinated by wind. The floral emissions of fifteen entomophilous species and eleven anemophilous species were captured by dynamic headspace sampling under field conditions and analyzed by gas chromatography-mass spectrometry. We searched for differences in the emission profiles between anemophilous and entomophilous flowers by considering the effects of phylogeny in our analysis. The floral emissions from the two groups were significantly different. Entomophilous species presented highly diverse emissions in both magnitude of emission rates and richness of compounds depending on the species, but overall, the flowers from entomophilous species had much higher VOC emission rates and VOC richness, both for terpenes and benzenoid compounds, than those from anemophilous species (two orders of magnitude higher emissions). The data thus confirm that the presence of intensely scented flowers with complex scents is strongly related to biotic pollination. © 2015 Elsevier Ltd.

Leer más

Páginas