Refining predictions of population decline at species' rear edges

Vilà-Cabrera A., Premoli A.C., Jump A.S. (2019) Refining predictions of population decline at species' rear edges. Global Change Biology. 25: 1549-1560.
Enlace
Doi: 10.1111/gcb.14597

Resumen:

According to broad-scale application of biogeographical theory, widespread retractions of species' rear edges should be seen in response to ongoing climate change. This prediction rests on the assumption that rear edge populations are “marginal” since they occur at the limit of the species' ecological tolerance and are expected to decline in performance as climate warming pushes them to extirpation. However, conflicts between observations and predictions are increasingly accumulating and little progress has been made in explaining this disparity. We argue that a revision of the concept of marginality is necessary, together with explicit testing of population decline, which is increasingly possible as data availability improves. Such action should be based on taking the population perspective across a species' rear edge, encompassing the ecological, geographical and genetic dimensions of marginality. Refining our understanding of rear edge populations is essential to advance our ability to monitor, predict and plan for the impacts of environmental change on species range dynamics. © 2019 John Wiley & Sons Ltd

Leer más

Forest management for adaptation to climate change in the Mediterranean basin: A synthesis of evidence

Vilà-Cabrera, A., Coll, L., Martínez-Vilalta, J., Retana, J. (2018) Forest management for adaptation to climate change in the Mediterranean basin: A synthesis of evidence. Forest Ecology and Management. 407: 16-22.
Enlace
Doi: 10.1016/j.foreco.2017.10.021

Resumen:

Climate- and successional-related changes in functional composition of European forests are strongly driven by tree mortality

Ruiz-Benito, P., Ratcliffe, S., Zavala, M.A., Martínez-Vilalta, J., Vilà-Cabrera, A., Lloret, F., Madrigal-González, J., Wirth, C., Greenwood, S., Kändler, G., Lehtonen, A., Kattge, J., Dahlgren, J., Jump, A.S. (2017) Climate- and successional-related changes in functional composition of European forests are strongly driven by tree mortality. Global Change Biology. : 0-0.
Enlace
Doi: 10.1111/gcb.13728

Resumen:

“New Forests” from the Twentieth Century are a Relevant Contribution for C Storage in the Iberian Peninsula

Vilà-Cabrera, A., Espelta, J.M., Vayreda, J., Pino, J. (2017) “New Forests” from the Twentieth Century are a Relevant Contribution for C Storage in the Iberian Peninsula. Ecosystems. 20: 130-143.
Enlace
Doi: 10.1007/s10021-016-0019-6

Resumen:

The Ecological Forest Inventory of Catalonia: A tool for functional ecology [El Inventario Ecológico y Forestal de Cataluña: una herramienta para la ecología funcional]

Vayreda, J., Martínez-Vilalta, J., Vilà-Cabrera, A. (2016) The Ecological Forest Inventory of Catalonia: A tool for functional ecology [El Inventario Ecológico y Forestal de Cataluña: una herramienta para la ecología funcional]. Ecosistemas. 25: 70-79.
Enlace
Doi: 10.7818/ECOS.2016.25-3.08

Resumen:

Functional trait variation along environmental gradients in temperate and Mediterranean trees

Vilà-Cabrera A., Martínez-Vilalta J., Retana J. (2015) Functional trait variation along environmental gradients in temperate and Mediterranean trees. Global Ecology and Biogeography. 24: 1377-1389.
Enlace
Doi: 10.1111/geb.12379

Resumen:

Aim: Characterizing the variation of functional traits in nature is a first step towards linking environmental changes to changes in ecosystem function. Here we aim to characterize the spatial variability of major plant functional traits along wide environmental gradients in Mediterranean and temperate forests, and assess to what extent this variability differs between two dominant families in Northern Hemisphere forests: Fagaceae and Pinaceae. Location: Catalonia (north-east Iberian Peninsula). Methods: Four functional traits were selected to incorporate information on both the leaf and the wood economic spectra: maximum tree height (Hmax), wood density (WD), leaf mass per area (LMA) and nitrogen content of leaves (Nmass). We quantified the variance distribution of each functional trait across three nested ecological scales: population, species and family. Through such scales, we explored the spatial variation of functional traits through climatic and biotic gradients, as well as the covariation among traits. Results: Functional trait variability was distributed across all the ecological scales considered, but mostly at the family level, with functional traits differing markedly between Fagaceae and Pinaceae. Within families, variation in functional traits was similar or higher within species than between species. The spatial variability in functional traits was related to biotic and abiotic gradients, although this effect was quantitatively small compared with differences between families. Covariation among functional traits was not necessarily conserved across ecological scales. Trait covariation across all species was structured along the Hmax-WD and LMA-Nmass axes, but this structure was partially lost within families, where variation was mostly structured along the Hmax-LMA and WD-Nmass axes. Main conclusions: Intraspecific variation emerges as a fundamental component of functional trait structure along wide environmental gradients. Understanding the sources of intraspecific variation, as well as how it contributes to community assembly and ecosystem functioning, thus becomes a primary research question. © 2015 John Wiley & Sons Ltd.

Leer más

Variation in reproduction and growth in declining Scots pine populations

Vila-Cabrera A., Martinez-Vilalta J., Retana J. (2014) Variation in reproduction and growth in declining Scots pine populations. Perspectives in Plant Ecology, Evolution and Systematics. 16: 111-120.
Enlace
Doi: 10.1016/j.ppees.2014.02.005

Resumen:

Disentangling how variation in reproduction and growth is linked in plants across different ecological scales, and how allocation rules change in response to stress are fundamental aspects of life history theory. Although it is known that reproductive allocation is an allometric process and that environmental conditions can influence demographic traits, patterns of variation in vegetative and reproductive functions across and within individuals of tree species suffering drought-induced decline have rarely been documented. In this study we use Scots pine (Pinus sylvestris L.) as a model species to explore patterns of variation in cone production and growth in two declining populations at the southern edge of its distribution. A Bayesian approach was used to assess how these demographic traits vary as a function of drought effects and competition and covary across different ecological scales. The allometric trajectories relating tree size with cone production and growth differed along gradients of drought impacts and biotic interactions. Although reproduction and growth increased with tree size, cone production reached a maximum at intermediate sized trees and stabilized or decreased at larger sizes. Drought stress effects (defoliation at the tree level and overall decline at the plot level) and competition for resources reduced cone production and growth. Our results also showed differential effects of defoliation on cone production depending on tree size, with stronger effects on larger individuals. After accounting for these effects, much of the variation of demographic traits and correlations among them occurred at small ecological scales across individuals (i.e. within plots) and within individuals across years. This resulted in covariations between demographic traits among nearby individuals and within individuals through time, suggesting a consistent advantage in resource acquisition of some individuals within plots, and trade-offs between growth and cone production within trees across years. In conclusion, this study reports that drought-induced forest decline is associated with lower growth and cone production in Scots pine, which could contribute to explain the long-term impacts of drought in southern populations of this species and, in particular, its low regeneration capacity after severe drought. © 2014 Geobotanisches Institut ETH, Stiftung Ruebel.

Leer más

Contrasting vulnerability and resilience to drought-induced decline of densely planted vs. natural rear-edge Pinus nigra forests

Sanchez-Salguero R., Camarero J.J., Dobbertin M., Fernandez-Cancio T., Vila-Cabrera A., Manzanedo R.D., Zavala M.A., Navarro-Cerrillo R.M. (2013) Contrasting vulnerability and resilience to drought-induced decline of densely planted vs. natural rear-edge Pinus nigra forests. Forest Ecology and Management. 310: 956-967.
Enlace
Doi: 10.1016/j.foreco.2013.09.050

Resumen:

The southernmost European natural and planted pine forests are among the most vulnerable areas to warming-induced drought decline. Both drought stress and management factors (e.g., stand origin or reduced thinning) may induce decline by reducing the water available to trees but their relative importances have not been properly assessed. The role of stand origin - densely planted vs. naturally regenerated stands - as a decline driver can be assessed by comparing the growth and vigor responses to drought of similar natural vs. planted stands. Here, we compare these responses in natural and planted Black pine (Pinus nigra) stands located in southern Spain. We analyze how environmental factors - climatic (temperature and precipitation anomalies) and site conditions - and biotic factors - stand structure (age, tree size, density) and defoliation by the pine processionary moth - drive radial growth and crown condition at stand and tree levels. We also assess the climatic trends in the study area over the last 60. years. We use dendrochronology, linear mixed-effects models of basal area increment and structural equation models to determine how natural and planted stands respond to drought and current competition intensity. We observed that a temperature rise and a decrease in precipitation during the growing period led to increasing drought stress during the late 20th century. Trees from planted stands experienced stronger growth reductions and displayed more severe crown defoliation after severe droughts than those from natural stands. High stand density negatively drove growth and enhanced crown dieback, particularly in planted stands. Also pine processionary moth defoliation was more severe in the growth of natural than in planted stands but affected tree crown condition similarly in both stand types. In response to drought, sharp growth reduction and widespread defoliation of planted Mediterranean pine stands indicate that they are more vulnerable and less resilient to drought stress than natural stands. To mitigate forest decline of planted stands in xeric areas such as the Mediterranean Basin, less dense and more diverse stands should be created through selective thinning or by selecting species or provenances that are more drought tolerant. © 2013 Elsevier B.V.

Leer más

Patterns of Forest Decline and Regeneration Across Scots Pine Populations

Vilà-Cabrera A., Martínez-Vilalta J., Galiano L., Retana J. (2013) Patterns of Forest Decline and Regeneration Across Scots Pine Populations. Ecosystems. 16: 323-335.
Enlace
Doi: 10.1007/s10021-012-9615-2

Resumen:

To predict future changes in forest ecosystems, it is crucial to understand the complex processes involved in decline of tree species populations and to evaluate the implications for potential vegetation shifts. Here, we study patterns of decline (canopy defoliation and mortality of adults) of four Scots pine populations at the southern edge of its distribution and characterized by different combinations of climate dryness and intensity of past management. General linear and structural equation modeling were used to assess how biotic, abiotic, and management components interacted to explain the spatial variability of Scots pine decline across and within populations. Regeneration patterns of Scots pine and co-occurring oak species were analyzed to assess potential vegetation shifts. Decline trends were related to climatic dryness at the regional scale, but, ultimately, within-population forest structure, local site conditions, and past human legacies could be the main underlying drivers of Scots pine decline. Overall, Scots pine regeneration was negatively related to decline both within and between populations, whereas oak species responded to decline idiosyncratically across populations. Taken together, our results suggest that (1) patterns of decline are the result of processes acting at the plot level that modulate forest responses to local environmental stress and (2) decline of adult Scots pine trees seems not to be compensated by self-recruitment so that the future dynamics of these forest ecosystems are uncertain. © 2012 Springer Science+Business Media New York.

Leer más

Las poblaciones ibéricas de pino albar ante el cambio climático: con la muerte en los talones.

Martínez-Vilalta J, Aguadé D, Banqué M, Barba J, Curiel Yuste J, Galiano L, Garcia N, Gómez M, Heres; AM, López BC, Lloret F, Poyatos R, Retana J, Sus O, Vayreda J, Vilà-Cabrera A (2012) Las poblaciones ibéricas de pino albar ante el cambio climático: con la muerte en los talones. Ecosistemas 21: 15-21.

Páginas