Needle terpene concentrations and emissions of two coexisting subspecies of Scots pine attacked by the pine processionary moth (Thaumetopoea pityocampa)

Achotegui-Castells A., Llusia J., Hodar J.A., Penuelas J. (2013) Needle terpene concentrations and emissions of two coexisting subspecies of Scots pine attacked by the pine processionary moth (Thaumetopoea pityocampa). Acta Physiologiae Plantarum. 35: 3047-3058.
Enlace
Doi: 10.1007/s11738-013-1337-3

Resumen:

Mediterranean pine forests are often attacked by caterpillars of Thaumetopoea pityocampa (Lep., Thaumetopoidae), one of the most important defoliators in the Mediterranean region causing large economic losses and ecological effects. The needle terpene concentrations and emissions may play a key role in the defense of pines. We studied two subspecies of Pinus sylvestris, nevadensis (an endemic and relict subspecies) and iberica, with different levels of caterpillar attack in Sierra Nevada mountains (Spain). GC-MS analyses showed large total concentrations of terpenes (6 to 39 mg g-1 of dry weight) in the needles of both subspecies under field conditions. Concentrations were 25 % higher in "Non-Attacked Trees" (NATs) of the iberica than in the nevadensis subspecies. The branches of NATs had terpene concentrations 20 % higher than those of "Attacked Branches of attacked trees" (ABs). Within attacked trees, the "Non-Attacked Branches" (NABs) also had terpene concentrations 20 % higher than those of ABs. Mainly α-pinene and germacrene D had higher concentrations in NATs and NABs than in ABs. Some terpenes had higher concentrations in NABs than in NATs, indicating possible systemic reactions. In subsp. nevadensis, the percentage of monoterpenes relative to total terpenes was higher in ABs than in other attack states. The rates of emission in nevadensis (standardized to 30 °C) were ca. three times higher in ABs than in NABs and NATs. These results suggest that the lower terpene concentrations and high percentages of monoterpenes in ABs were produced by a combination of emission losses and terpene induction in response to herbivorous attack. © 2013 Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków.

Leer más