Evidence for insect seed predator dynamics mediated by vertebrate frugivores

Peguero G., Espelta J.M. (2013) Evidence for insect seed predator dynamics mediated by vertebrate frugivores. Revista Chilena de Historia Natural. 86: 161-167.
Enllaç
Doi: 10.4067/S0716-078X2013000200005

Resum:

Vertebrate frugivores have been suggested to reduce seed predation, indirectly controlling populations of insect seed predators (ISP) by means of consuming many individuals when feeding on fruits. The possibility has not been explored, however, that this 'frugivore predation' may differentially affect ISP according to species-specific differences in larval development time within the fruit. In the dry tropical forest trees Acacia pennatula and Guazuma ulmifolia we compared seed predation and the absolute and relative abundances of bruchid beetle species (Bruchinae) in two sites, one with large frugivores (cattle) and the other cattle-free for a considerable time. In the site with cattle we found a notable overall reduction in the proportion of seeds predated (ca. 15 %) with respect to cattle-free site, and changes in the ISP community as well, in particular a reduced absolute and relative abundance of the bruchid species with the longest larval development time. Our results suggest that the interplay between evolutionary processes (resulting in variation in insect life-histories) and complex ecological interactions (inadvertent consumption by larger animals) may contribute to the coexistence of different insect species feeding upon the same host plant. © Sociedad de Biología de Chile.

Llegeix més

Allelopathic potential of the neotropical dry-forest tree Acacia pennatula Benth.: Inhibition of seedling establishment exceeds facilitation under tree canopies

Peguero G., Lanuza O.R., Savé R., Espelta J.M. (2013) Allelopathic potential of the neotropical dry-forest tree Acacia pennatula Benth.: Inhibition of seedling establishment exceeds facilitation under tree canopies. Plant Ecology. 213: 1945-1953.
Enllaç
Doi: 10.1007/s11258-011-0014-0

Resum:

Secondary succession after land abandonment in tropical dry forests has been suggested to be favoured by the facilitation effects for seedling establishment exerted by pioneer trees isolated in these savannah-like landscapes. However, it has also been noticed that these pioneer species may sometimes have an encroaching effect and arrest succession for several decades. We investigated in this study whether allelopathy can play a role in limiting seedling establishment of co-occurring tree species under the canopy of Acacia pennatula by means of lab bioassays and field experiments in north-west Nicaragua. Leaf extracts of A. pennatula did not affect seed germination but reduced the general growth and especially the development of the root compartment in seedlings, shifting their biomass allocation model to a reduced root/shoot ratio. Survival of planted seedlings under the canopy of A. pennatula was about 20-30% lower than outside, and this reduction was particularly pronounced as the dry season progressed, despite the milder conditions (e. g. higher soil moisture) being experienced in the inner positions under the canopy. Altogether, our results suggest that, rather than facilitating, A. pennatula may inhibit the establishment of seedlings under its canopy probably by means of an allelopathic interference in the development of the root system with critical negative consequences for young seedlings in terms of overcoming the dry season. This article warns about overemphasizing the nucleation effect that remnant and isolated trees may have to facilitate secondary succession in these highly disturbed savannah-like tropical dry forests. © 2011 Springer Science+Business Media B.V.

Llegeix més

Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation

Peng S., Piao S., Ciais P., Myneni R.B., Chen A., Chevallier F., Dolman A.J., Janssens I.A., Penuelas J., Zhang G., Vicca S., Wan S., Wang S., Zeng H. (2013) Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature. 501: 88-92.
Enllaç
Doi: 10.1038/nature12434

Resum:

Temperature data over the past five decades show faster warming of the global land surface during the night than during the day. This asymmetric warming is expected to affect carbon assimilation and consumption in plants, because photosynthesis in most plants occurs during daytime and is more sensitive to the maximum daily temperature, Tmax, whereas plant respiration occurs throughout the day and is therefore influenced by both T max and the minimum daily temperature, Tmin. Most studies of the response of terrestrial ecosystems to climate warming, however, ignore this asymmetric forcing effect on vegetation growth and carbon dioxide (CO 2) fluxes. Here we analyse the interannual covariations of the satellite-derived normalized difference vegetation index (NDVI, an indicator of vegetation greenness) with Tmax and Tmin over the Northern Hemisphere. After removing the correlation between Tmax and T min, we find that the partial correlation between Tmax and NDVI is positive in most wet and cool ecosystems over boreal regions, but negative in dry temperate regions. In contrast, the partial correlation between Tmin and NDVI is negative in boreal regions, and exhibits a more complex behaviour in dry temperate regions. We detect similar patterns in terrestrial net CO2 exchange maps obtained from a global atmospheric inversion model. Additional analysis of the long-term atmospheric CO2 concentration record of the station Point Barrow in Alaska suggests that the peak-to-peak amplitude of CO2 increased by 23 ± 11% for a +1°C anomaly in T max from May to September over lands north of 51N, but decreased by 28 ± 14% for a +1°C anomaly in Tmin. These lines of evidence suggest that asymmetric diurnal warming, a process that is currently not taken into account in many global carbon cycle models, leads to a divergent response of Northern Hemisphere vegetation growth and carbon sequestration to rising temperatures. © 2013 Macmillan Publishers Limited. All rights reserved.

Llegeix més

Intensive measurements of gas, water, and energy exchange between vegetation and troposphere during the MONTES campaign in a vegetation gradient from short semi-desertic shrublands to tall wet temperate forests in the NW Mediterranean Basin

Penuelas J., Guenther A., Rapparini F., Llusia J., Filella I., Seco R., Estiarte M., Mejia-Chang M., Ogaya R., Ibanez J., Sardans J., Castano L.M., Turnipseed A., Duhl T., Harley P., Vila J., Estavillo J.M., Menendez S., Facini O., Baraldi R., Geron C., Mak J., Patton E.G., Jiang X., Greenberg J. (2013) Intensive measurements of gas, water, and energy exchange between vegetation and troposphere during the MONTES campaign in a vegetation gradient from short semi-desertic shrublands to tall wet temperate forests in the NW Mediterranean Basin. Atmospheric Environment. 75: 348-364.
Enllaç
Doi: 10.1016/j.atmosenv.2013.04.032

Resum:

MONTES ("Woodlands") was a multidisciplinary international field campaign aimed at measuring energy, water and especially gas exchange between vegetation and atmosphere in a gradient from short semi-desertic shrublands to tall wet temperate forests in NE Spain in the North Western Mediterranean Basin (WMB). The measurements were performed at a semidesertic area (Monegros), at a coastal Mediterranean shrubland area (Garraf), at a typical Mediterranean holm oak forest area (Prades) and at a wet temperate beech forest (Montseny) during spring (April 2010) under optimal plant physiological conditions in driest-warmest sites and during summer (July 2010) with drought and heat stresses in the driest-warmest sites and optimal conditions in the wettest-coolest site. The objective of this campaign was to study the differences in gas, water and energy exchange occurring at different vegetation coverages and biomasses. Particular attention was devoted to quantitatively understand the exchange of biogenic volatile organic compounds (BVOCs) because of their biological and environmental effects in the WMB. A wide range of instruments (GC-MS, PTR-MS, meteorological sensors, O3 monitors,. .) and vertical platforms such as masts, tethered balloons and aircraft were used to characterize the gas, water and energy exchange at increasing footprint areas by measuring vertical profiles. In this paper we provide an overview of the MONTES campaign: the objectives, the characterization of the biomass and gas, water and energy exchange in the 4 sites-areas using satellite data, the estimation of isoprene and monoterpene emissions using MEGAN model, the measurements performed and the first results. The isoprene and monoterpene emission rates estimated with MEGAN and emission factors measured at the foliar level for the dominant species ranged from about 0 to 0.2mgm-2h-1 in April. The warmer temperature in July resulted in higher model estimates from about 0 to ca. 1.6mgm-2h-1 for isoprene and ca. 4.5mgm-2h-1 for monoterpenes, depending on the site vegetation and footprint area considered. There were clear daily and seasonal patterns with higher emission rates and mixing ratios at midday and summer relative to early morning and early spring. There was a significant trend in CO2 fixation (from 1 to 10mgCm-2d-1), transpiration (from1-5kgCm-2d-1), and sensible and latent heat from the warmest-driest to the coolest-wettest site. The results showed the strong land-cover-specific influence on emissions of BVOCs, gas, energy and water exchange, and therefore demonstrate the potential for feed-back to atmospheric chemistry and climate. •We present a multidisciplinary biosphere-atmosphere field campaign.•We measured a gradient from semi-desertic shrublands to wet temperate forests.•A wide range of instruments and vertical platforms were used.•Land cover strongly influenced emissions of BVOCs and gas, energy and water exchange.•Vegetation has strong potential for feed-back to atmospheric chemistry and climate. © 2013 Elsevier Ltd.

Llegeix més

Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe

Penuelas J., Poulter B., Sardans J., Ciais P., Van Der Velde M., Bopp L., Boucher O., Godderis Y., Hinsinger P., Llusia J., Nardin E., Vicca S., Obersteiner M., Janssens I.A. (2013) Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications. 4: 0-0.
Enllaç
Doi: 10.1038/ncomms3934

Resum:

The availability of carbon from rising atmospheric carbon dioxide levels and of nitrogen from various human-induced inputs to ecosystems is continuously increasing; however, these increases are not paralleled by a similar increase in phosphorus inputs. The inexorable change in the stoichiometry of carbon and nitrogen relative to phosphorus has no equivalent in Earth's history. Here we report the profound and yet uncertain consequences of the human imprint on the phosphorus cycle and nitrogen:phosphorus stoichiometry for the structure, functioning and diversity of terrestrial and aquatic organisms and ecosystems. A mass balance approach is used to show that limited phosphorus and nitrogen availability are likely to jointly reduce future carbon storage by natural ecosystems during this century. Further, if phosphorus fertilizers cannot be made increasingly accessible, the crop yields projections of the Millennium Ecosystem Assessment imply an increase of the nutrient deficit in developing regions. © 2013 Macmillan Publishers Limited.

Llegeix més

Evidence of current impact of climate change on life: A walk from genes to the biosphere

Penuelas J., Sardans J., Estiarte M., Ogaya R., Carnicer J., Coll M., Barbeta A., Rivas-Ubach A., Llusia J., Garbulsky M., Filella I., Jump A.S. (2013) Evidence of current impact of climate change on life: A walk from genes to the biosphere. Global Change Biology. 19: 2303-2338.
Enllaç
Doi: 10.1111/gcb.12143

Resum:

We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade-offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life. © 2013 John Wiley & Sons Ltd.

Llegeix més

Foliar chemistry and standing folivory of early and late-successional species in a Bornean rainforest

Penuelas J., Sardans J., Llusia J., Silva J., Owen S.M., Bala-Ola B., Linatoc A.C., Dalimin M.N., Niinemets U. (2013) Foliar chemistry and standing folivory of early and late-successional species in a Bornean rainforest. Plant Ecology and Diversity. 6: 245-256.
Enllaç
Doi: 10.1080/17550874.2013.768713

Resum:

Background: Few studies have investigated the chemical, morphological and physiological foliar traits and the intensity of standing folivory in a representative set of species of tropical rainforests including species of different successional stages. Aims: (i) To quantify leaf elemental composition, leaf phenolics and tannin concentrations, physical leaf traits and the intensity of standing folivory in a representative set of species of different successional stages in a Bornean tropical rainforest, and (ii) to investigate the relationships among leaf traits and between leaf traits and accumulated standing folivory. Methods: Analyses of leaf elemental concentrations, phenolics (Ph) and tannin (Tan) concentrations, leaf mass area (LMA), C assimilation rate and accumulated standing folivory in 88 common rainforest species of Borneo. Results and Conclusions: Accumulated standing folivory was correlated with the scores of the first axis of the elemental concentrations principal component analysis (mainly loaded by K and C:K and N:K ratios) with lower accumulated standing folivory at high leaf K concentrations (R = -0.33, P = 0.0016). The results show that consistent with growth rate hypothesis, fast-growing pioneer species have lower leaf N:P ratios than late-successional species, that species with higher leaf N concentration have lower LMA according with the 'leaf economics spectrum' hypothesis, and that species with lower leaf nutrient concentration allocate more C to leaf phenolics. This study also shows that species with different ecological roles have different biogeochemical 'niches' assessed as foliar elemental composition. © 2013 Copyright 2013 Botanical Society of Scotland and Taylor & Francis.

Llegeix més

Physical ecology: The search for life law

Penuelas J., Terradas J. (2013) Physical ecology: The search for life law. Open Ecology Journal. 6: 7-9.
Enllaç
Doi: 10.2174/1874213020130516001

Resum:

Life on Earth is the result of a continuous accumulation of information by combination and innovation riding on endo and exosomatic energy gradients and discontinuous destructions. © Penuelas and Terradas; Licensee Bentham Open.

Llegeix més

A geostatistical approach for selecting the highest quality MODIS daily images

Pesquer L., Domingo C., Pons X. (2013) A geostatistical approach for selecting the highest quality MODIS daily images. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 7887 LNCS: 608-615.
Enllaç
Doi: 10.1007/978-3-642-38628-2_72

Resum:

The aim of this work was to develop a new methodology for automatic selection of the highest quality MODIS daily images, MOD09GA Surface Reflectance product. The methodology developed here complements the quality assessment of MODIS products with a geostatistical analysis of spatial pattern images based on variogram tools. The resulting selection is formed by 26 high-quality images (from an initial dataset of 365) from throughout 2007. Most images with geometric distortion problems, such as the bow-tie effect, were rejected. The automatic selection was validated by comparing it to manual selection, which showed that it achieved an overall accuracy of 71.4%. © 2013 Springer-Verlag.

Llegeix més

Spatial pattern alterations from JPEG2000 lossy compression of remote sensing images: Massive variogram analysis in high performance computing

Pesquer L., Pons X., Cortes A., Serral I. (2013) Spatial pattern alterations from JPEG2000 lossy compression of remote sensing images: Massive variogram analysis in high performance computing. Journal of Applied Remote Sensing. 7: 0-0.
Enllaç
Doi: 10.1117/1.JRS.7.073595

Resum:

We evaluate the implications of JPEG2000 lossy compression of remote sensing images for spatial analytical purposes. The main issue is to identify which cases and conditions in geostatistical studies are suitable for using lossy compressed images. For these purposes, an extensive test using Landsat, compact airborne spectrographic imager (CASI), and moderate resolution imaging spectroradiometer (MODIS) image series has been analyzed, through applying and comparing two-dimensional and three-dimensional (spectral and time domains) compression methods with a wide range of compression ratios for several dates, different landscape regions, and spectral bands. Due to the massive test bed and consequently to the high time consuming executions, a parallel solution was specifically developed. Variogram analyses showed that all the compression ratios maintain the variogram shapes, but high compression ratios (>20:1) degrade the spatial patterns of the remote sensing images. These alterations are lower for the three-dimensional compression method, which was a considerable improvement (25%) on the two-dimensional method for large three-dimensional series (CASI, MODIS). However, the two methods behave similarly in the Landsat case. Finally, the parallel solution in a distributed environment demonstrates that high performance computing offers a suitable scientific platform for highly demanding time execution applications, such as geostatistical analyses of remote sensing images. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.

Llegeix més

Pàgines