Relationship between projected changes in future climatic suitability and demographic and functional traits of forest tree species in Spain

Lloret F., Martinez-Vilalta J., Serra-Diaz J.M., Ninyerola M. (2013) Relationship between projected changes in future climatic suitability and demographic and functional traits of forest tree species in Spain. Climatic Change. 120: 449-462.
Enllaç
Doi: 10.1007/s10584-013-0820-6

Resum:

The response of plant species to future climate conditions is probably dependent on their ecological characteristics, including climatic niche, demographic rates and functional traits. Using forest inventory data from 27 dominant woody species in Spanish forests, we explore the relationships between species characteristics and projected changes in their average climatic suitability (occurrence of suitable climatic conditions for a species in a given territory) obtained by empirical niche-based models, under a business-as-usual climate change scenario (A1, HadCM3, 2001-2100). We hypothesize that most species will suffer a decline in climatic suitability, with a less severe for species (i) currently living in more arid climates or exhibiting a broader current climatic niche; (ii) with higher current growth rates; (iii) with functional traits related to resistance to water deficits. The analysis confirm our hypothesis since apart from a few Mediterranean species, most species decrease their climatic suitability in the region under future climate, characterized by increased aridity. Also, species living in warmer locations or under a wider range of climatic conditions tend to experience less decrease in climatic suitability. As hypothesized, a positive relationship was detected between current relative growth rates and increase in future climatic suitability. Nevertheless, current tree mortality did not correlate with changes in future climatic suitability. In contrast with our hypothesis, functional traits did not show a clear relationship with changes in climate suitability; instead species often presented idiosyncratic responses that, in some cases, could reflect past management. These results suggest that the extrapolation of species performance to future climatic scenarios based on current patterns of dominance is constrained by factors other than species autoecology, particularly human activity. © 2013 Springer Science+Business Media Dordrecht.

Llegeix més

Seasonal variations in terpene emission factors of dominant species in four ecosystems in NE Spain

Llusia J., Penuelas J., Guenther A., Rapparini F. (2013) Seasonal variations in terpene emission factors of dominant species in four ecosystems in NE Spain. Atmospheric Environment. 70: 149-158.
Enllaç
Doi: 10.1016/j.atmosenv.2013.01.005

Resum:

We studied the daily patterns in the rates of foliar terpene emissions by four typical species from the Mediterranean region in two days of early spring and two days of summer in 4 localities of increasing biomass cover in Northern Spain. The species studied were Thymelaea tinctoria (in Monegros), Quercus coccifera (in Garraf), Quercus ilex (in Prades) and Fagus sylvatica (in Montseny). Of the total 43 VOCs detected, 23 were monoterpenes, 5 sesquiterpenes and 15 were not terpenes. Sesquiterpenes were the main terpenes emitted from T. tinctoria. Total VOC emission rates were on average about 15 times higher in summer than in early spring. The maximum rates of emission were recorded around midday. Emissions nearly stopped in the dark. No significant differences were found for nocturnal total terpene emission rates between places and seasons. The seasonal variations in the rate of terpene emissions and in their chemical composition can be explained mainly by dramatic changes in emission factors (emission capacity) associated in some cases, such as for beech trees, with very different foliar ontogenical characteristics between spring and summer. The results show that temperature and light-standardised emission rates were on average about 15 times higher in summer than in early spring, which, corroborating other works, calls to attention when applying the same emission factor in modelling throughout the different seasons of the year. © 2013 Elsevier Ltd.

Llegeix més

Future variability of droughts in three Mediterranean catchments

Lopez-Bustins J.A., Pascual D., Pla E., Retana J. (2013) Future variability of droughts in three Mediterranean catchments. Natural Hazards. 69: 1405-1421.
Enllaç
Doi: 10.1007/s11069-013-0754-3

Resum:

In the present study, we analyze the magnitude and frequency of long-term droughts throughout the present century in Catalonia in the north-eastern Iberian Peninsula (Spain). In fact, this western Mediterranean region has recently suffered one of the most extreme dry episodes (2006-2008) in the last decades. This calls for further study of future perspectives of drought variability at the local scale. We selected three medium-sized catchments on the Catalan littoral: Fluvià, Tordera and Siurana. We employed both instrumental and simulated temperature and rainfall data to calculate two multi-scalar drought indices: the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). Instrumental data consisted of several weather stations for a recent period: 1984-2008. Future projections covering the 2001-2100 period were extracted from a dynamical downscaling procedure at a 15-km horizontal grid resolution, nesting the mesoscale model MM5 into the atmosphere-ocean coupled model ECHAM5/MPI-OM, performed by the Meteorological Service of Catalonia. We calculated 24-month SPI and SPEI values for the instrumental and simulated periods, and no changes were found in drought variability for the early twenty-first century. For the mid-century, high climatic variability was detected, as extremely dry and wet periods might alternate according to the SPI values. At the end of the present century, we generally detected, particularly in the dry catchment of southern Catalonia, Siurana, more severe and longer droughts than the last extreme drought (2006-2008). There is a need to implement appropriate and specific adaptation strategies for water management of each catchment over the next decades to reduce the risk of the forecasted drought conditions. © 2013 Springer Science+Business Media Dordrecht.

Llegeix més

Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation

Marcer A., Saez L., Molowny-Horas R., Pons X., Pino J. (2013) Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biological Conservation. 166: 221-230.
Enllaç
Doi: 10.1016/j.biocon.2013.07.001

Resum:

Range maps provide important information in species conservation management, specially in the case of rare species of conservation interest. For the vast majority of cases, this information can only be estimated by means of species distribution modelling. When absence data is unavailable, modelled distribution maps represent the spatial variation of the degree of suitability for the species rather than their realised distribution. Although discerning potentially suitable areas for a given species is an important asset in conservation, it is necessary to estimate current distributions in order to preserve current populations. This work explores the use of species distribution modelling (Maxent) for species of conservation interest when their Extent of Occurrence (EOO) is well-known and there is quality occurrence data. In this case, derived binary maps of potentially suitable areas can be obtained and used to assess the conservation and protection status of a given species in combination with the EOO and existing protected area networks. Seven species, which are rare and endemic to the Western Mediterranean, have been used as an example. Valuable information for conservation assessment such as potentially suitable areas, EOO, Areas of Occupancy (AOO) and degree of protection is provided for this set of species. In addition, the existing informal view that among experts these species have range sizes much smaller than their potentially suitable area is confirmed. This could probably be attributed to important but currently unknown predictor variables and to historical phylogeographic factors. © 2013 Elsevier Ltd.

Llegeix més

A 70,000 year multiproxy record of climatic and environmental change from Rano Aroi peatland (Easter Island)

Margalef O., Canellas-Bolta N., Pla-Rabes S., Giralt S., Pueyo J.J., Joosten H., Rull V., Buchaca T., Hernandez A., Valero-Garces B.L., Moreno A., Saez A. (2013) A 70,000 year multiproxy record of climatic and environmental change from Rano Aroi peatland (Easter Island). Global and Planetary Change. 108: 72-84.
Enllaç
Doi: 10.1016/j.gloplacha.2013.05.016

Resum:

The Rano Aroi mire on Easter Island (also known as Rapa Nui; 27°09'S, 109°27'W, 430m above sea level) provides a unique non-marine record in the central South Pacific Ocean for reconstructing Late Pleistocene environmental changes. The results of a multiproxy study on two cores from the center and margin of the Rano Aroi mire, including peat stratigraphy, facies analysis, elemental and isotope geochemistry on bulk organic matter, X-ray fluorescence (XRF) core scanning and macrofossil analysis, were used to infer past water levels and vegetation changes. The chronology was based on 18 14C AMS dates for the upper 8.7m. The extrapolated age for the base of the sequence is 70kyr, which implies that this record is the oldest paleolimnological record on Easter Island. The recovered Rano Aroi sequence consists of a radicel peat formed primarily from the remains of sedges, grasses and Polygonaceae that have accumulated since Marine Isotopic Stage (MIS) 4 (70kyr BP) to the present. From 60 to 40kyr BP (MIS 3), high precipitation/runoff events were recorded as organic mud facies with lighter δ13C, low C/N values and high Ti content, indicating higher detritic input to the mire. A gradual shift in δ13C bulk organic matter from -14% to -26%, recorded between 50 and 45calkyr BP, suggests a progressive change in local peat-forming vegetation from C4 to C3 plant types. Post-depositional Ca and Fe enrichment during sub-aerial peat exposure and very low sedimentation rates indicate lower water tables during Late MIS 3 (39-31calkyr BP). During MIS 2 (27.8-19calkyr BP), peat production rates were very low, most likely due to cold temperatures, as reconstructed from other Easter Island records during the Last Glacial Maximum (LGM). Geochemical and macrofossil evidence shows that peat accumulation reactivates at approximately 17.5calkyr BP, reaching the highest accumulation rates at 14calkyr BP. Peat accretion decreased from 5.0 to 2.5calkyr BP, coinciding with a regional Holocene aridity phase. The main hydrological and environmental changes in Rano Aroi reflect variations in the South Pacific Convergence Zone (SPCZ), Southern Westerlies (SW) storm track, and South Pacific Anticyclone (SPA) locations. © 2013 Elsevier B.V.

Llegeix més

Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework

Mcdowell N.G., Fisher R.A., Xu C., Domec J.C., Holtta T., Mackay D.S., Sperry J.S., Boutz A., Dickman L., Gehres N., Limousin J.M., Macalady A., Martinez-Vilalta J., Mencuccini M., Plaut J.A., Ogee J., Pangle R.E., Rasse D.P., Ryan M.G., Sevanto S., Waring R.H., Williams A.P., Yepez E.A., Pockman W.T. (2013) Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytologist. 200: 304-321.
Enllaç
Doi: 10.1111/nph.12465

Resum:

Summary: Model-data comparisons of plant physiological processes provide an understanding of mechanisms underlying vegetation responses to climate. We simulated the physiology of a piñon pine-juniper woodland (Pinus edulis-Juniperus monosperma) that experienced mortality during a 5 yr precipitation-reduction experiment, allowing a framework with which to examine our knowledge of drought-induced tree mortality. We used six models designed for scales ranging from individual plants to a global level, all containing state-of-the-art representations of the internal hydraulic and carbohydrate dynamics of woody plants. Despite the large range of model structures, tuning, and parameterization employed, all simulations predicted hydraulic failure and carbon starvation processes co-occurring in dying trees of both species, with the time spent with severe hydraulic failure and carbon starvation, rather than absolute thresholds per se, being a better predictor of impending mortality. Model and empirical data suggest that limited carbon and water exchanges at stomatal, phloem, and below-ground interfaces were associated with mortality of both species. The model-data comparison suggests that the introduction of a mechanistic process into physiology-based models provides equal or improved predictive power over traditional process-model or empirical thresholds. Both biophysical and empirical modeling approaches are useful in understanding processes, particularly when the models fail, because they reveal mechanisms that are likely to underlie mortality. We suggest that for some ecosystems, integration of mechanistic pathogen models into current vegetation models, and evaluation against observations, could result in a breakthrough capability to simulate vegetation dynamics. © 2013 New Phytologist Trust.

Llegeix més

Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem-generated turgor signal

Mencuccini M., Holtta T., Sevanto S., Nikinmaa E. (2013) Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem-generated turgor signal. New Phytologist. 198: 1143-1154.
Enllaç
Doi: 10.1111/nph.12224

Resum:

Currently, phloem transport in plants under field conditions is not well understood. This is largely the result of the lack of techniques suitable for the measurement of the physiological properties of phloem. We present a model that interprets the changes in xylem diameter and live bark thickness and separates the components responsible for such changes. We test the predictions from this model on data from three mature Scots pine trees in Finland. The model separates the live bark thickness variations caused by bark water capacitance from a residual signal interpreted to indicate the turgor changes in the bark. The predictions from the model are consistent with processes related to phloem transport. At the diurnal scale, this signal is related to patterns of photosynthetic activity and phloem loading. At the seasonal scale, bark turgor showed rapid changes during two droughts and after two rainfall events, consistent with physiological predictions. Daily cumulative totals of this turgor term were related to daily cumulative totals of canopy photosynthesis. Finally, the model parameter representing radial hydraulic conductance between phloem and xylem showed a temperature dependence consistent with the temperature-driven changes in water viscosity. We propose that this model has potential for the continuous field monitoring of tree phloem function. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

Llegeix més

Bird predation affects diurnal and nocturnal web-building spiders in a Mediterranean citrus grove

Mestre L., Garcia N., Barrientos J.A., Espadaler X., Piñol J. (2013) Bird predation affects diurnal and nocturnal web-building spiders in a Mediterranean citrus grove. Acta Oecologica. 47: 74-80.
Enllaç
Doi: 10.1016/j.actao.2013.01.001

Resum:

Spiders and birds can greatly decrease insect populations, but birds also limit spider densities in some habitats. Bird predation is thought to be one of the causes behind nocturnal activity in spiders, so night-active spiders that hide in retreats during the day should be less affected by bird foraging than day-active spiders. However, this hypothesis has not yet been tested. We investigated the importance of bird predation on the spider community of a Mediterranean organic citrus grove. We excluded birds by placing net cages over the trees and we conducted visual searches in the canopies to sample web-building spiders. As there are many nocturnal species in the family Araneidae, we conducted searches both by day and by night to compare the abundance of active araneids in these two time periods. We sampled the tree trunks with cardboard bands to collect hunting spiders. In bird-excluded canopies there were more spiders of the families Araneidae and Theridiidae. There were higher numbers of active Araneidae at night, but these were just as negatively affected by bird predation as day-active Araneidae, so there was no evidence of nocturnal activity serving as an anti-predator strategy. We did not find any negative impact of birds on hunting spiders. Our results contrast with other studies reporting a negative effect of birds on hunting but not on web-building spiders. © 2013.

Llegeix més

Ant exclusion in citrus over an 8-year period reveals a pervasive yet changing effect of ants on a Mediterranean spider assemblage

Mestre L., Pinol J., Barrientos J.A., Espadaler X. (2013) Ant exclusion in citrus over an 8-year period reveals a pervasive yet changing effect of ants on a Mediterranean spider assemblage. Oecologia. 173: 239-248.
Enllaç
Doi: 10.1007/s00442-013-2594-y

Resum:

Ants and spiders are ubiquitous generalist predators that exert top-down control on herbivore populations. Research shows that intraguild interactions between ants and spiders can negatively affect spider populations, but there is a lack of long-term research documenting the strength of such interactions and the potentially different effects of ants on the diverse array of species in a spider assemblage. Similarly, the suitability of family-level surrogates for finding patterns revealed by species-level data (taxonomic sufficiency) has almost never been tested in spider assemblages. We present a long-term study in which we tested the impact of ants on the spider assemblage of a Mediterranean citrus grove by performing sequential 1-year experimental exclusions on tree canopies for 8 years. We found that ants had a widespread influence on the spider assemblage, although the effect was only evident in the last 5 years of the study. During those years, ants negatively affected many spiders, and effects were especially strong for sedentary spiders. Analyses at the family level also detected assemblage differences between treatments, but they concealed the different responses to ant exclusion shown by some related spider species. Our findings show that the effects of experimental manipulations in ecology can vary greatly over time and highlight the need for long-term studies to document species interactions. © 2013 Springer-Verlag Berlin Heidelberg.

Llegeix més

Trophic structure of the spider community of a Mediterranean citrus grove: A stable isotope analysis

Mestre L., Pinol J., Barrientos J.A., Espadaler X., Brewitt K., Werner C., Platner C. (2013) Trophic structure of the spider community of a Mediterranean citrus grove: A stable isotope analysis. Basic and Applied Ecology. 14: 413-422.
Enllaç
Doi: 10.1016/j.baae.2013.05.001

Resum:

Spiders are dominant terrestrial predators that consume a large variety of prey and engage in intraguild predation. Although the feeding habits of certain species are well known, the trophic structure of spider assemblages still needs to be investigated. Stable isotope analysis enables characterisation of trophic relationships between organisms because it tracks the energy flow in food webs and indicates the average number of trophic transfers between a given species and the base of the web, thus being a useful tool to estimate the magnitude of intraguild predation in food webs. Using this technique, we studied the trophic groups of spiders and their links within the arthropod food web of a Mediterranean organic citrus grove. We assessed the trophic positions of the 25 most common spider species relative to other arthropod predators and potential prey in the four seasons of the year, both in the canopy and on the ground. The analyses showed great seasonal variation in the isotopic signatures of some arthropod species, as well as the existence of various trophic groups and a wide range of trophic levels among spiders, even in species belonging to the same family. Differences in δ15N between spiders and the most abundant prey in the grove usually spanned two trophic levels or more. Our findings provide field evidence of widespread intraguild predation in the food web and caution against using spider families or guilds instead of individual species when studying spider trophic interactions. © 2013 Gesellschaft für Ökologie.

Llegeix més

Pàgines