Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: Efects on nutrient proficiency

Estiarte M., Penuelas J. (2015) Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: Efects on nutrient proficiency. Global Change Biology. 21: 1005-1017.
Enllaç
Doi: 10.1111/gcb.12804

Resum:

Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress. © 2014 John Wiley & Sons Ltd.

Llegeix més

Optimum temperature for floral terpene emissions tracks the mean temperature of the flowering season

Farre-Armengol G., Filella I., Llusia J., Niinemets U., Penuelas J. (2015) Optimum temperature for floral terpene emissions tracks the mean temperature of the flowering season. Functional Plant Biology. 42: 851-857.
Enllaç
Doi: 10.1071/FP14279

Resum:

Emissions of volatiles from leaves exhibit temperature dependence on maximums, but the optimum temperatures for the release of floral volatiles and the mechanism(s) of optimising these emissions have not been determined. We hypothesised that flowers have an optimum temperature for the emission of volatiles and, because the period of flowering varies highly among species, that this optimum is adapted to the temperatures prevailing during flowering. To test these hypotheses, we characterised the temperature responses of floral terpene emissions of diverse widespread Mediterranean plant species flowering in different seasons by using dynamic headspace sampling and analysis with GC-MS. The floral emissions of terpenes across species exhibited maximums at the temperatures corresponding to the season of flowering, with the lowest optimal temperatures observed in winter-flowering and the highest in summer-flowering species. These trends were valid for emissions of both total terpenes and the various terpene compounds. The results show that the optimum temperature of floral volatile emissions scales with temperature at flowering, and suggest that this scaling is the outcome of physiological adaptations of the biosynthetic or emission mechanisms of flowers. © CSIRO 2015.

Llegeix més

Relationships among floral VOC emissions, floral rewards and visits of pollinators in five plant species of a Mediterranean shrubland

Farre-Armengol G., Filella I., Llusia J., Penuelas J. (2015) Relationships among floral VOC emissions, floral rewards and visits of pollinators in five plant species of a Mediterranean shrubland. Plant Ecology and Evolution. 148: 90-99.
Enllaç
Doi: 10.5091/plecevo.2015.963

Resum:

Background and aims–In plant-pollinator communities seasonal changes in the abundance of pollinators lead to seasonal changes in competition among flowering plants for their services. Here we address the following question: Do flowers of a given species produce more olfactory signals (emissions of volatile compounds) and rewards (nectar and pollen) during the phase(s) of the flowering period within which they have to maximally compete with the signals and rewards of other co-flowering species in the community, compared to the amount of signals and rewards produced during the period(s) with less floral competition? Methods–We analysed the floral emission rates of biogenic volatile organic compounds by gas chromatography and proton transfer reaction mass spectrometry, the visitation rates of pollinators, and the availability of nectar and pollen during the flowering periods of five species to test whether floral rewards and signals would decrease with an increase in pollinator visitation rates during late spring and early summer, i.e. coinciding with decreasing competitive pressure for the services of pollinators. Key results–The results indicate that phenological patterns in the production of rewards are only present at the species level in those species with long flowering periods or with matching periods of changes in pollinator populations. The capacity of emitting isoprenoids and oxidised volatile organic compounds, however, did not present significant patterns during the flowering period in any of the five species studied. Conclusions–The results support the hypothesis of a decreasing competitive pressure for the attraction of pollinators that may drive a decrease in floral investment in rewards but not an accompanying decrease of the capacity of emitting volatile olfactory signals in a species with long flowering period. However, the negative correlation between nectar production and visitation rates may be reinforced by the opposite responses of these variables to climatic conditions. This fact makes difficult to discern possible evolutionary forces tending to decrease rewards from plastic responses to changing environmental conditions in that part of the flowering period in which pollinator visitation rates are higher. © 2015 Botanic Garden Meise and Royal Botanical Society of Belgium.

Llegeix més

Pollination mode determines floral scent

Farre-Armengol G., Filella I., Llusia J., Penuelas J. (2015) Pollination mode determines floral scent. Biochemical Systematics and Ecology. 61: 44-53.
Enllaç
Doi: 10.1016/j.bse.2015.05.007

Resum:

The main objective of this study is to determine if the pollination vector influences the potential floral emissions of flowering plants. We hypothesized that flowers pollinated by insects would emit significantly higher amounts of volatile organic compounds (VOCs) and would present a higher diversity of these compounds than flowers pollinated by wind. The floral emissions of fifteen entomophilous species and eleven anemophilous species were captured by dynamic headspace sampling under field conditions and analyzed by gas chromatography-mass spectrometry. We searched for differences in the emission profiles between anemophilous and entomophilous flowers by considering the effects of phylogeny in our analysis. The floral emissions from the two groups were significantly different. Entomophilous species presented highly diverse emissions in both magnitude of emission rates and richness of compounds depending on the species, but overall, the flowers from entomophilous species had much higher VOC emission rates and VOC richness, both for terpenes and benzenoid compounds, than those from anemophilous species (two orders of magnitude higher emissions). The data thus confirm that the presence of intensely scented flowers with complex scents is strongly related to biotic pollination. © 2015 Elsevier Ltd.

Llegeix més

Ozone degrades floral scent and reduces pollinator attraction to flowers

Farre-Armengol G., Penuelas J., Li T., Yli-Pirila P., Filella I., Llusia J., Blande J.D. (2015) Ozone degrades floral scent and reduces pollinator attraction to flowers. New Phytologist. : 0-0.
Enllaç
Doi: 10.1111/nph.13620

Resum:

In this work we analyzed the degradation of floral scent volatiles from Brassica nigra by reaction with ozone along a distance gradient and the consequences for pollinator attraction. For this purpose we used a reaction system comprising three reaction tubes in which we conducted measurements of floral volatiles using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) and GC-MS. We also tested the effects of floral scent degradation on the responses of the generalist pollinator Bombus terrestris. The chemical analyses revealed that supplementing air with ozone led to an increasing reduction in the concentrations of floral volatiles in air with distance from the volatile source. The results revealed different reactivities with ozone for different floral scent constituents, which emphasized that ozone exposure not only degrades floral scents, but also changes the ratios of compounds in a scent blend. Behavioural tests revealed that floral scent was reduced in its attractiveness to pollinators after it had been exposed to 120 ppb O3 over a 4.5 m distance. The combined results of chemical analyses and behavioural responses of pollinators strongly suggest that high ozone concentrations have significant negative impacts on pollination by reducing the distance over which floral olfactory signals can be detected by pollinators. © 2015 New Phytologist Trust.

Llegeix més

Enhanced emissions of floral volatiles by Diplotaxis erucoides (L.) in response to folivory and florivory by Pieris brassicae (L.)

Farré-Armengol G., Filella I., Llusia J., Primante C., Peñuelas J. (2015) Enhanced emissions of floral volatiles by Diplotaxis erucoides (L.) in response to folivory and florivory by Pieris brassicae (L.). Biochemical Systematics and Ecology. 63: 51-58.
Enllaç
Doi: 10.1016/j.bse.2015.09.022

Resum:

The main function of floral emissions of volatile organic compounds (VOCs) in entomophilous plants is to attract pollinators. Floral blends, however, can also contain volatile compounds with defensive functions. These defensive volatiles are specifically emitted when plants are attacked by pathogens or herbivores. We characterized the changes in the floral emissions of Diplotaxis erucoides induced by folivory and florivory by Pieris brassicae. Plants were continually subjected to folivory, florivory and folivory + florivory treatments for two days. We measured floral emissions with proton transfer reaction/mass spectroscopy (PTR-MS) at different times during the application of the treatments. The emissions of methanol, ethyl acetate and another compound, likely 3-butenenitrile, increased significantly in response to florivory. Methanol and 3-butenenitrile increased 2.4- and 26-fold, respectively, in response to the florivory treatment. Methanol, 3-butenenitrile and ethyl acetate increased 3-, 100- and 9-fold, respectively, in response to the folivory + florivory treatment. Folivory alone had no detectable effect on floral emissions. All VOC emissions began immediately after attack, with no evidence of delayed induction in any of the treatments. Folivory and florivory had a synergistic effect when applied together, which strengthened the defensive response when the attack was extended to the entire plant. © 2015 Elsevier Ltd.

Llegeix més

Variation in the reproductive success of a narrow endemic plant: Effects of geographical distribution, abiotic conditions and pollinator community composition

Fernandez J.D., Lorite J., Bosch J., Gomez J.M. (2015) Variation in the reproductive success of a narrow endemic plant: Effects of geographical distribution, abiotic conditions and pollinator community composition. Basic and Applied Ecology. 16: 375-385.
Enllaç
Doi: 10.1016/j.baae.2015.02.006

Resum:

Geographic variation in reproductive output determines plant distribution. In this study, we investigate the geographic structure and the factors affecting reproductive success throughout the life cycle of the near-threatened crucifer Erysimum popovii across its entire distribution range. We worked in 21 populations, in which we measured fruit set, seed set, seed weight, seed germination in the laboratory, germination time, seedling emergence in the field, seedling survival and fecundity. We also sampled the pollinator assemblages visiting E. popovii at each site, as well as some population characteristics (population size and density, flower density of E. popovii and other co-occurring species, and rainfall). Germination success in the laboratory was very high (range: 0.56-0.98), but seedling emergence in the field was low (0.005-0.32). Beefly visitation rate was positively related to seedling emergence, whereas visitation rate by ants, beetles and other minor pollinator groups was negatively related to fruit set and positively related to germination time. Populations in sites with high density of co-occurring flowers produced fewer fruits. Most variables related to reproductive output varied widely across populations, but this variation did not show a clear regional structure. The low seedling survival may constitute a bottleneck for the recruitment of this species. Overall, less than 0.2% of the ovules produced developed into reproductive individuals. Our results suggest a metapopulation structure for E. popovii. © 2015 Gesellschaft für Ökologie.

Llegeix més

Temporal trends in the enhanced vegetation index and spring weather predict seed production in Mediterranean oaks

Fernandez-Martinez M., Garbulsky M., Penuelas J., Peguero G., Espelta J.M. (2015) Temporal trends in the enhanced vegetation index and spring weather predict seed production in Mediterranean oaks. Plant Ecology. 216: 1061-1072.
Enllaç
Doi: 10.1007/s11258-015-0489-1

Resum:

The extremely year-to-year variable production of seeds (masting) is an extended plant reproductive behaviour important for forest dynamics and food webs. The dependence of these episodes of massive seed production on recently or long-term photosynthesised carbohydrates, however, remains controversial. In this paper, we explore whether vegetation (tree canopy) changes, detected using EVI as a proxy of leaf area and photosynthetic capacity, can provide a reliable estimation of seed production. To complete this analysis, we also explored the effect of weather both in the trends of EVI and in acorn crop size. To this end, we compared the trends of the EVI and acorn production over 10 years (2000–2009) in five stands of Quercus ilex L. in Barcelona (Catalonia, NE Spain). We found that acorn production was mainly driven by a combination of: (i) a minimum initial threshold in the EVI values, (ii) an increase in EVI in the 9 ± 4 months prior to reproduction, and (iii) appropriate weather conditions (low water stress) during spring. These results indicated, apparently for the first time, that reproduction in masting species could be detected and partly predicted by remotely sensed vegetative indices. Our results suggested that this particular reproductive behaviour in Mediterranean oaks was driven by a combination of two factors, i.e. good and improving vegetation conditions, as shown by a minimum initial threshold and the increase in EVI needed for large seed crops, and the need of wet weather conditions during spring. Moreover, our results fully supported recent studies that have associated short-term photosynthate production with seed production. © 2015, Springer Science+Business Media Dordrecht.

Llegeix més

Reply to 'Uncertain effects of nutrient availability on global forest carbon balance' and 'Data quality and the role of nutrients in forest carbon-use efficiency'

Fernández-Martínez M., Vicca S., Janssens I.A., Sardans J., Luyssaert S., Campioli M., Chapin F.S., Ciais P., Malhi Y., Obersteiner M., Papale D., Piao S.L., Reichstein M., Rodà F., Peñuelas J. (2015) Reply to 'Uncertain effects of nutrient availability on global forest carbon balance' and 'Data quality and the role of nutrients in forest carbon-use efficiency'. Nature Climate Change. 5: 960-961.
Enllaç
Doi: 10.1038/nclimate2794

Resum:

[No abstract available]

Llegeix més

Declining global warming effects on the phenology of spring leaf unfolding

Fu Y.H., Zhao H., Piao S., Peaucelle M., Peng S., Zhou G., Ciais P., Huang M., Menzel A., Peñuelas J., Song Y., Vitasse Y., Zeng Z., Janssens I.A. (2015) Declining global warming effects on the phenology of spring leaf unfolding. Nature. 526: 104-107.
Enllaç
Doi: 10.1038/nature15402

Resum:

Earlier spring leaf unfolding is a frequently observed response of plants to climate warming. Many deciduous tree species require chilling for dormancy release, and warming-related reductions in chilling may counteract the advance of leaf unfolding in response to warming. Empirical evidence for this, however, is limited to saplings or twigs in climate-controlled chambers. Using long-term in situ observations of leaf unfolding for seven dominant European tree species at 1,245 sites, here we show that the apparent response of leaf unfolding to climate warming (S T, expressed in days advance of leaf unfolding per °C warming) has significantly decreased from 1980 to 2013 in all monitored tree species. Averaged across all species and sites, S T decreased by 40% from 4.0 ± 1.8 days °C-1 during 1980-1994 to 2.3 ± 1.6 days °C-1 during 1999-2013. The declining S T was also simulated by chilling-based phenology models, albeit with a weaker decline (24-30%) than observed in situ. The reduction in S T is likely to be partly attributable to reduced chilling. Nonetheless, other mechanisms may also have a role, such as 'photoperiod limitation' mechanisms that may become ultimately limiting when leaf unfolding dates occur too early in the season. Our results provide empirical evidence for a declining S T, but also suggest that the predicted strong winter warming in the future may further reduce S T and therefore result in a slowdown in the advance of tree spring phenology. © 2015 Macmillan Publishers Limited. All rights reserved.

Llegeix més

Pàgines