Ecological stoichiometry of C, N, and P of invasive Phragmites australis and native Cyperus malaccensis species in the Minjiang River tidal estuarine wetlands of China

Wang W.Q., Sardans J., Wang C., Zeng C.S., Tong C., Asensio D., Penuelas J. (2015) Ecological stoichiometry of C, N, and P of invasive Phragmites australis and native Cyperus malaccensis species in the Minjiang River tidal estuarine wetlands of China. Plant Ecology. : 0-0.
Enllaç
Doi: 10.1007/s11258-015-0469-5

Resum:

Tidal estuarine wetlands of China are rich in plant diversity, but several global change drivers, such as species invasion, are currently affecting the biogeochemical cycles of these ecosystems. We seasonally analyzed the carbon (C), nitrogen (N), and phosphorus (P) concentrations in litters and soils and in leaves, stems, and roots of the C3 invasive species Phragmites australis (Cav.) Trin. ex Steud. and of the C4 native species Cyperus malaccensis var. brevifolius Boeckeler to investigate the effect of C3 plant invasion on C, N, and P stoichiometry in the C4 plant-dominated tidal wetlands of the Minjiang River. When averaged across seasons, the invasive species P. australis had higher N concentrations and lower P concentrations in leaves than the native species C. malaccensis. N and P concentrations were lower in litter (stem and leaf), whereas C concentrations in leaf litter were higher in P. australis than in C. malaccensis. The C, N, and P concentrations of the soil also did not differ, but plants had a lower C:N and much higher N:P ratios than soils. Root C:P and N:P ratios were lower in the growing season both in the invasive and the native species. The leaf C:N, C:P and N:P ratios peaked in summer. The invasive species had lower C:N ratio in leaves and roots, and higher N:P ratios in all biomass organs and litter than the native species, an effect related with the higher N-resorption capacity of the invasive species. Interspecific differences in C:N, C:P, and N:P ratios may likely reflect the differences in plant morphology, nutrient-use efficiency, and photosynthetic capacity between the C3 (P. australis) and C4 (C. malaccensis) plants. Our results generally suggested that the success of P. australis in these wetlands was related to its slow growth and higher resorption capacity of N and P. This implies a more conservative use of limited nutrients, particularly N, by P. australis, and to higher N concentration in its biomass thus potentially contributing to its invasiveness in these estuarine wetlands. © 2015 Springer Science+Business Media Dordrecht

Llegeix més

The application of ecological stoichiometry to plant-microbial-soil organic matter transformations

Zechmeister-Boltenstern S., Keiblinger K.M., Mooshammer M., Peñuelas J., Richter A., Sardans J., Wanek W. (2015) The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecological Monographs. 85: 133-155.
Enllaç
Doi: 10.1890/14-0777.1

Resum:

Elemental stoichiometry constitutes an inherent link between biogeochemistry and the structure and processes within food webs, and thus is at the core of ecosystem functioning. Stoichiometry allows for spanning different levels of biological organization, from cellular metabolism to ecosystem structure and nutrient cycling, and is therefore particularly useful for establishing links between different ecosystem compartments. We review elemental carbon : nitrogen : phosphorus (C:N:P) ratios in terrestrial ecosystems (from vegetation, leaf litter, woody debris, and dead roots, to soil microbes and organic matter). While the stoichiometry of the plant, litter, and soil compartments of ecosystems is well understood, heterotrophic microbial communities, which dominate the soil food web and drive nutrient cycling, have received increasing interest in recent years. This review highlights the effects of resource stoichiometry on soil microorganisms and decomposition, specifically on the structure and function of heterotrophic microbial communities and suggests several general patterns. First, latitudinal gradients of soil and litter stoichiometry are reflected in microbial community structure and function. Second, resource stoichiometry may cause changes in microbial interactions and community dynamics that lead to feedbacks in nutrient availability. Third, global change alters the C:N, C:P, and N:P ratios of primary producers, with repercussions for microbial decomposer communities and critical ecosystem services such as soil fertility. We argue that ecological stoichiometry provides a framework to analyze and predict such global change effects at various scales. © 2015 by the Ecological Society of America.

Llegeix més

Pàgines