Temperature response of soil respiration largely unaltered with experimental warming

Carey, J.C., Tang, J., Templer, P.H., Kroeger, K.D., Crowther, T.W., Burton, A.J., Dukes, J.S., Emmett, B., Frey, S.D., Heskel, M.A., Jiang, L., Machmuller, M.B., Mohan, J., Panetta, A.M., Reich, P.B., Reinschj, S., Wang, X., Allison, S.D., Bamminger, C., Bridgham, S., Collins, S.L., De Dato, G., Eddy, W.C., Enquist, B.J., Estiarte, M., Harte, J., Henderson, A., Johnson, B.R., Larsen, K.S., Luo, Y., Marhan, S., Melillo, J.M., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Rastetter, E., Reinmann, A.B., Reynolds, L.L., Schmidt, I.K., Shaver, G.R., Strong, A.L., Suseela, V., Tietema, A. (2016) Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences of the United States of America. 113: 13797-13802.
Enllaç
Doi: 10.1073/pnas.1605365113

Resum:

Quantifying global soil carbon losses in response to warming

Crowther, T.W., Todd-Brown, K.E.O., Rowe, C.W., Wieder, W.R., Carey, J.C., MacHmuller, M.B., Snoek, B.L., Fang, S., Zhou, G., Allison, S.D., Blair, J.M., Bridgham, S.D., Burton, A.J., Carrillo, Y., Reich, P.B., Clark, J.S., Classen, A.T., Dijkstra, F.A., Elberling, B., Emmett, B.A., Estiarte, M., Frey, S.D., Guo, J., Harte, J., Jiang, L., Johnson, B.R., Kroël-Dulay, G., Larsen, K.S., Laudon, H., Lavallee, J.M., Luo, Y., Lupascu, M., Ma, L.N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S., Reynolds, L.L., Schmidt, I.K., Sistla, S., Sokol, N.W., Templer, P.H., Treseder, K.K., Welker, J.M., Bradford, M.A. (2016) Quantifying global soil carbon losses in response to warming. Nature. 540: 104-108.
Enllaç
Doi: 10.1038/nature20150

Resum:

Few multiyear precipitation-reduction experiments find a shift in the productivity-precipitation relationship

Estiarte M., Vicca S., Peñuelas J., Bahn M., Beier C., Emmett B.A., Fay P.A., Hanson P.J., Hasibeder R., Kigel J., Kröel-Dulay G., Larsen K.S., Lellei-Kovács E., Limousin J.-M., Ogaya R., Ourcival J.-M., Reinsch S., Sala O.E., Schmidt I.K., Sternberg M., Tielbörger K., Tietema A., Janssens I.A. (2016) Few multiyear precipitation-reduction experiments find a shift in the productivity-precipitation relationship. Global Change Biology. : 0-0.
Enllaç
Doi: 10.1111/gcb.13269

Resum:

Well-defined productivity-precipitation relationships of ecosystems are needed as benchmarks for the validation of land models used for future projections. The productivity-precipitation relationship may be studied in two ways: the spatial approach relates differences in productivity to those in precipitation among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach relates interannual productivity changes to variation in precipitation within sites (the temporal fits, with flatter slopes). Precipitation-reduction experiments in natural ecosystems represent a complement to the fits, because they can reduce precipitation below the natural range and are thus well suited to study potential effects of climate drying. Here, we analyse the effects of dry treatments in eleven multiyear precipitation-manipulation experiments, focusing on changes in the temporal fit. We expected that structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept of the temporal fit and displacing the productivity-precipitation relationship downward the spatial fit. The majority of experiments (72%) showed that dry treatments did not alter the temporal fit. This implies that current temporal fits are to be preferred over the spatial fit to benchmark land-model projections of productivity under future climate within the precipitation ranges covered by the experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due to mechanisms that reduced either water loss or nutrient loss. The expected decrease of the intercept was observed in only one experiment, and only when distinguishing between the late and the early phases of the experiment. This implies that we currently do not know at which precipitation-reduction level or at which experimental duration structural changes will start to alter ecosystem productivity. Our study highlights the need for experiments with multiple, including more extreme, dry treatments, to identify the precipitation boundaries within which the current temporal fits remain valid. © 2016 John Wiley & Sons Ltd.

Llegeix més

Temperature Dependence of Soil Respiration Modulated by Thresholds in Soil Water Availability Across European Shrubland Ecosystems

Lellei-Kovács, E., Botta-Dukát, Z., de Dato, G., Estiarte, M., Guidolotti, G., Kopittke, G.R., Kovács-Láng, E., Kröel-Dulay, G., Larsen, K.S., Peñuelas, J., Smith, A.R., Sowerby, A., Tietema, A., Schmidt, I.K. (2016) Temperature Dependence of Soil Respiration Modulated by Thresholds in Soil Water Availability Across European Shrubland Ecosystems. Ecosystems. 19: 1460-1477.
Enllaç
Doi: 10.1007/s10021-016-0016-9

Resum:

Physiological adjustments of a Mediterranean shrub to long-term experimental warming and drought treatments

Liu D., Llusia J., Ogaya R., Estiarte M., Llorens L., Yang X., Peñuelas J. (2016) Physiological adjustments of a Mediterranean shrub to long-term experimental warming and drought treatments. Plant Science. 252: 53-61.
Enllaç
Doi: 10.1016/j.plantsci.2016.07.004

Resum:

Warmer temperatures and extended drought in the Mediterranean Basin are becoming increasingly important in determining plant physiological processes and affecting the regional carbon budget. The responses of plant physiological variables such as shoot water potential (Ψ), carbon-assimilation rates (A), stomatal conductance (gs) and intrinsic water-use efficiency (iWUE) to these climatic regimes, however, are not well understood. We conducted long-term (16 years) field experiments with mild nocturnal warming (+0.6 °C) and drought (−20% soil moisture) in a Mediterranean early-successional shrubland. Warming treatment moderately influenced Ψ, A and gs throughout the sampling periods, whereas drought treatment strongly influenced these variables, especially during the summer. The combination of a natural drought in summer 2003 and the treatments significantly decreased A and iWUE. Foliar δ13C increased in the treatments relative to control, but not significantly. The values of Ψ, A and gs were correlated negatively with vapor-pressure deficit (VPD) and positively with soil moisture and tended to be more dependent on the availability of soil water. The plant, however, also improved the acclimation to drier and hotter conditions by physiological adjustments (gs and iWUE). Understanding these physiological processes in Mediterranean shrubs is crucial for assessing further climate change impacts on ecosystemic functions and services. © 2016 Elsevier Ireland Ltd

Llegeix més

Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Rico, L., Barbeta, A., Achotegui-Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol, G., Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I., Camino, M., Vives, M., Nadal-Sala, D., Sabaté, S., Gracia, C., Terradas, J. (2016) Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environmental and Experimental Botany. : 0-0.
Enllaç
Doi: 10.1016/j.envexpbot.2017.05.012

Resum:

Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: Efects on nutrient proficiency

Estiarte M., Penuelas J. (2015) Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: Efects on nutrient proficiency. Global Change Biology. 21: 1005-1017.
Enllaç
Doi: 10.1111/gcb.12804

Resum:

Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress. © 2014 John Wiley & Sons Ltd.

Llegeix més

Increased sensitivity to climate change in disturbed ecosystems

Kroel-Dulay G., Ransijn J., Schmidt I.K., Beier C., De Angelis P., De Dato G., Dukes J.S., Emmett B., Estiarte M., Garadnai J., Kongstad J., Kovacs-Lang E., Larsen K.S., Liberati D., Ogaya R., Riis-Nielsen T., Smith A.R., Sowerby A., Tietema A., Penuelas J. (2015) Increased sensitivity to climate change in disturbed ecosystems. Nature Communications. 6: 0-0.
Enllaç
Doi: 10.1038/ncomms7682

Resum:

Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports this relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experimental warming and drought, and responsiveness is associated with the dynamic state of the ecosystem, with recently disturbed sites responding to treatments. Furthermore, most of these responses are not rapid (2-5 years) but emerge over a longer term (7-14 years). These results suggest that successional state influences the sensitivity of ecosystems to climate change, and that ecosystems recovering from disturbances may be sensitive to even modest climatic changes. A research bias towards undisturbed ecosystems might thus lead to an underestimation of the impacts of climate change. © 2015 Macmillan Publishers Limited. All rights reserved.

Llegeix més

Spatial variability and controls over biomass stocks, carbon fluxes, and resource-use efficiencies across forest ecosystems

Fernandez-Martinez M., Vicca S., Janssens I.A., Luyssaert S., Campioli M., Sardans J., Estiarte M., Penuelas J. (2014) Spatial variability and controls over biomass stocks, carbon fluxes, and resource-use efficiencies across forest ecosystems. Trees - Structure and Function. 28: 597-611.
Enllaç
Doi: 10.1007/s00468-013-0975-9

Resum:

Key message: Stand age, water availability, and the length of the warm period are the most influencing controls of forest structure, functioning, and efficiency. We aimed to discern the distribution and controls of plant biomass, carbon fluxes, and resource-use efficiencies of forest ecosystems ranging from boreal to tropical forests. We analysed a global forest database containing estimates of stand biomass and carbon fluxes (400 and 111 sites, respectively) from which we calculated resource-use efficiencies (biomass production, carbon sequestration, light, and water-use efficiencies). We used the WorldClim climatic database and remote-sensing data derived from the Moderate Resolution Imaging Spectroradiometer to analyse climatic controls of ecosystem functioning. The influences of forest type, stand age, management, and nitrogen deposition were also explored. Tropical forests exhibited the largest gross carbon fluxes (photosynthesis and ecosystem respiration), but rather low net ecosystem production, which peaks in temperate forests. Stand age, water availability, and length of the warm period were the main factors controlling forest structure (biomass) and functionality (carbon fluxes and efficiencies). The interaction between temperature and precipitation was the main climatic driver of gross primary production and ecosystem respiration. The mean resource-use efficiency varied little among biomes. The spatial variability of biomass stocks and their distribution among ecosystem compartments were strongly correlated with the variability in carbon fluxes, and both were strongly controlled by climate (water availability, temperature) and stand characteristics (age, type of leaf). Gross primary production and ecosystem respiration were strongly correlated with mean annual temperature and precipitation only when precipitation and temperature were not limiting factors. Finally, our results suggest a global convergence in mean resource-use efficiencies. © 2013 Springer-Verlag Berlin Heidelberg.

Llegeix més

A tethered-balloon PTRMS sampling approach for surveying of landscape-scale biogenic VOC fluxes

Greenberg J.P., Penuelas J., Guenther A., Seco R., Turnipseed A., Jiang X., Filella I., Estiarte M., Sardans J., Ogaya R., Llusia J., Rapparini F. (2014) A tethered-balloon PTRMS sampling approach for surveying of landscape-scale biogenic VOC fluxes. Atmospheric Measurement Techniques. 7: 2263-2271.
Enllaç
Doi: 10.5194/amt-7-2263-2014

Resum:

Landscape-scale fluxes of biogenic gases were surveyed by deploying a 100 m Teflon tube attached to a tethered balloon as a sampling inlet for a fast-response proton-transfer-reaction mass spectrometer (PTRMS). Along with meteorological instruments deployed on the tethered balloon and a 3 m tripod and outputs from a regional weather model, these observations were used to estimate landscape-scale biogenic volatile organic compound fluxes with two micrometeorological techniques: mixed layer variance and surface layer gradients. This highly mobile sampling system was deployed at four field sites near Barcelona to estimate landscape-scale biogenic volatile organic compound (BVOC) emission factors in a relatively short period (3 weeks). The two micrometeorological techniques were compared with emissions predicted with a biogenic emission model using site-specific emission factors and land-cover characteristics for all four sites. The methods agreed within the uncertainty of the techniques in most cases, even though the locations had considerable heterogeneity in species distribution and complex terrain. Considering the wide range in reported BVOC emission factors for individual vegetation species (more than an order of magnitude), this temporally short and inexpensive flux estimation technique may be useful for constraining BVOC emission factors used as model inputs. © 2014 Author(s).

Llegeix més

Pàgines