Effectiveness of predator satiation in masting oaks is negatively affected by conspecific density

Bogdziewicz M., Espelta J.M., Muñoz A., Aparicio J.M., Bonal R. (2018) Effectiveness of predator satiation in masting oaks is negatively affected by conspecific density. Oecologia. 186: 983-993.
Enllaç
Doi: 10.1007/s00442-018-4069-7

Resum:

Variation in seed availability shapes plant communities, and is strongly affected by seed predation. In some plant species, temporal variation in seed production is especially high and synchronized over large areas, which is called ‘mast seeding’. One selective advantage of this phenomenon is predator satiation which posits that masting helps plants escape seed predation through starvation of predators in lean years, and satiation in mast years. However, even though seed predation can be predicted to have a strong spatial component and depend on plant densities, whether the effectiveness of predator satiation in masting plants changes according to the Janzen-Connell effect has been barely investigated. We studied, over an 8-year period, the seed production, the spatiotemporal patters of weevil seed predation, and the abundance of adult weevils in a holm oak (Quercus ilex) population that consists of trees interspersed at patches covering a continuum of conspecific density. Isolated oaks effectively satiate predators, but this is trumped by increasing conspecific plant density. Lack of predator satiation in trees growing in dense patches was caused by re-distribution of insects among plants that likely attenuated them against food shortage in lean years, and changed the type of weevil functional response from type II in isolated trees to type III in trees growing in dense patches. This study provides the first empirical evaluation of the notion that masting and predator satiation should be more important in populations that start to dominate their communities, and is consistent with the observation that masting is less frequent and less intense in diverse forests. © 2018, The Author(s).

Llegeix més

Reproduction, energy storage and metabolic requirements in a mesophotic population of the gorgonian Paramuricea macrospina

Grinyó J., Viladrich N., Díaz D., Muñoz A., Mallol S., Salazar J., Castillo R., Gili J.-M., Gori A. (2018) Reproduction, energy storage and metabolic requirements in a mesophotic population of the gorgonian Paramuricea macrospina. PLoS ONE. 13: 0-0.
Enllaç
Doi: 10.1371/journal.pone.0203308

Resum:

This study examined the sexual reproductive cycle, energy storage and metabolic requirements of a Mediterranean gorgonian in a mesophotic ecosystem (~70 m depth). Paramuricea macrospina resulted to be a gonochoric internal brooding species with a 1:1 population sex ratio. Oogenesis lasted ~12–14 months, whereas spermatogenesis was significantly shorter, only lasting 6 months. Fertilization occurred during late summer (August) and larval release occurred during autumn (September–October). The organic matter and total lipid content showed a slight seasonal variability. Stable isotopic composition remained constant throughout the year, reflecting a general stability in gorgonian food sources. Conversely, the free fatty acid composition varied seasonally, reflecting changes in P. macrospina energetic demands probably related to gametogenesis and larval brooding. The reproductive ecology and biochemical composition of P. macrospina significantly differ from shallow coastal gorgonian species, reflecting the higher environmental stability of deeper environments. © 2018 Grinyó et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Llegeix més

Distribution and space use of seed-dispersing rodents in central Pyrenees: implications for genetic diversity, conservation and plant recruitment

Urgoiti J., MuÑoz A., Espelta J.M., Bonal R. (2018) Distribution and space use of seed-dispersing rodents in central Pyrenees: implications for genetic diversity, conservation and plant recruitment. Integrative Zoology. 13: 307-318.
Enllaç
Doi: 10.1111/1749-4877.12301

Resum:

The function and conservation of many forest ecosystems depend on the distribution and diversity of the community of rodents that consume and disperse seeds. The habitat preferences and interactions are especially relevant in alpine systems where such granivorous rodents reach the southernmost limit of their distribution and are especially sensitive to global warming. We analyzed the community of granivorous rodents in the Pyrenees, one of the southernmost mountain ranges of Europe. Rodent species were identified by DNA with particular attention to the Apodemus species, which are prominent seed-dispersing rodents in Europe. We confirmed for the first time the presence of the yellow-necked mouse, Apodemus flavicollis, in central Pyrenees, a typical Eurosiberian species that reaches its southernmost distribution limit in this area. We also found the wood mouse, Apodemus sylvaticus, a related species more tolerant to Mediterranean environments. Both rodents were spatially segregated by altitude. A. sylvaticus was rare at high altitudes, which might cause the genetic differentiation between populations of the different valleys reported here. We also found other seed consumers like dormice, Elyomis quercinus, and voles, Myodes glareolus, with marked habitat preferences. We suggest that population isolation among valleys may increase the genetic diversity of rodents, like A. sylvaticus. We also highlight the potential threat that global warming may represent for species linked to high-altitude refuges at the southern edge of its distribution, like Apodemus flavicollis. Finally, we discuss how this threat may have a dimension in the conservation of alpine forests dispersed by these rodent populations. © 2018 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd

Llegeix més