Large-scale recruitment limitation in Mediterranean pines: The role of Quercus ilex and forest successional advance as key regional drivers

Carnicer J., Coll M., Pons X., Ninyerola M., Vayreda J., Penuelas J. (2014) Large-scale recruitment limitation in Mediterranean pines: The role of Quercus ilex and forest successional advance as key regional drivers. Global Ecology and Biogeography. 23: 371-384.
Enllaç
Doi: 10.1111/geb.12111

Resum:

Aim: Large-scale patterns of limitations in tree recruitment remain poorly described in the Mediterranean Basin, and this information is required to assess the impacts of global warming on forests. Here, we unveil the existence of opposite trends of recruitment limitation between the dominant genera Quercus and Pinus on a large scale and identify the key ecological drivers of these diverging trends. Location: Spain Methods: We gathered data from the Spanish National Forest inventory to assess recruitment trends for the dominant species (Pinus halepensis, Pinus pinea, Pinus pinaster, Pinus nigra, Pinus sylvestris, Pinus uncinata, Quercus suber, Quercus ilex, Quercus petraea, Quercus robur, Quercus faginea and Quercus pyrenaica). We assessed the direct and indirect drivers of recruitment by applying Bayesian structural equation modelling techniques. Results: Severe limitations in recruitment were observed across extensive areas for all Pinus species studied, with recruitment failure affecting 54-71% of the surveyed plots. In striking contrast, Quercus species expanded into 41% of the plots surveyed compared to only 10% for Pinus and had a lower local recruitment failure (29% of Quercus localities compared to 63% for Pinus species). Bayesian structural equation models highlighted the key role of the presence of Q.ilex saplings and the increase in the basal area of Q.ilex in limiting recruitment in five Pinus species. The recruitment of P.sylvestris and P.nigra showed the most negative trends and was negatively associated with the impacts of fire. Main conclusions: This study identified Q.ilex, the most widespread species in this area, as a key driver of recruitment shifts on a large scale, negatively affecting most pine species with the advance of forest succession. These results highlight that the future expansion/contraction of Q.ilex stands with ongoing climate change will be a key process indirectly controlling the demographic responses of Pinus species in the Mediterranean Basin. © 2013 John Wiley & Sons Ltd.

Llegeix més

SMOS and climate data applicability for analyzing forest decline and forest fires

Chaparro D., Vayreda J., Martinez-Vilalta J., Vall-Llossera M., Banque M., Camps A., Piles M. (2014) SMOS and climate data applicability for analyzing forest decline and forest fires. International Geoscience and Remote Sensing Symposium (IGARSS). : 1069-1072.
Enllaç
Doi: 10.1109/IGARSS.2014.6946613

Resum:

Forests partially reduce climate change impact but, at the same time, this climate forcing threatens forest's health. In recent decades, droughts are becoming more frequent and intense implying an increase of forest decline episodes and forest fires. In this context, global and frequent soil moisture observations from the ESA's SMOS mission could be useful in controlling forest exposure to decline and fires. In this paper, SMOS observations and several climate variables are analyzed together with decline and fire inventories, to study the effect of soil moisture on forest decline during an important drought on summer 2012, and on forest fires in the period 2010-2013. Results show that SMOS-derived soil moisture is a complementary variable in forest decline models. Some of the studied tree species exhibit high probability of decline occurrence under dry conditions. First results showed burned areas to be drier than unburned ones previous to the fire occurrences. © 2014 IEEE.

Llegeix més