Assessing the distribution of forest ecosystem services in a highly populated Mediterranean region

Roces-Díaz J.V., Vayreda J., Banqué-Casanovas M., Cusó M., Anton M., Bonet J.A., Brotons L., De Cáceres M., Herrando S., Martínez de Aragón J., de-Miguel S., Martínez-Vilalta J. (2018) Assessing the distribution of forest ecosystem services in a highly populated Mediterranean region. Ecological Indicators. 93: 986-997.
Enllaç
Doi: 10.1016/j.ecolind.2018.05.076

Resum:

Forest ecosystems provide a wide range of goods and services to society and host high levels of biodiversity. Nevertheless, forest ecosystem services (ES) are often quantified and assessed using simplified methodologies (e.g., proxy methods based exclusively on Land Use Land Cover maps) that introduce substantial uncertainty in the analysis by ignoring, for instance, the species composition and spatial configuration of the ecosystems studied. In this work we defined and calculated a set of 12 indicators of several ES for the forests of the highly populated region of Catalonia (North-eastern Iberian Peninsula). The indicators combined different sources of information such as forest surveys, ecological model predictions and official statistics, but also included additional land cover information. All ES indicators were aggregated at the municipality level to compare their values and distribution patterns. We assessed spatial trade-offs and synergies among ES, as well as their relationships with a set of socioeconomic, climatic and biodiversity variables using correlation analyses and mixed-effects models. The results suggest a clustering of provisioning and regulating ES in mountainous zones towards the North of the study area. These two types of services showed a high degree of spatial similarity and presented high positive correlations. In contrast, cultural ES showed a more scattered pattern, which included lower elevation areas in the South of the study region. Climatic conditions were the main determinants of the spatial variability in the supply of the different ES, with most indicators being positively associated with precipitation and negatively associated with temperature. In addition, biodiversity (particularly woody species richness) showed positive relations with most of these ES, while socioeconomic variables (such as population density and the percentage employment in agriculture) showed negative associations with most of them. The combination of information from different data sources (including primary data) allowed for a detailed analysis of forest ES, likely removing some of the problems derived from approaches based only on proxy methods. In addition, the use of municipalities as study unit makes results directly relevant to management and planning strategies operating at this scale (e.g., forest management and planning). © 2018 Elsevier Ltd

Llegeix més

The spatial level of analysis affects the patterns of forest ecosystem services supply and their relationships

Roces-Díaz, J.V., Vayreda, J., Banqué-Casanovas, M., Díaz-Varela, E., Bonet, J.A., Brotons, L., de-Miguel, S., Herrando, S., Martínez-Vilalta, J. (2018) The spatial level of analysis affects the patterns of forest ecosystem services supply and their relationships. Science of the Total Environment. 626: 1270-1283.
Enllaç
Doi: 10.1016/j.scitotenv.2018.01.150

Resum:

Self-thinning in four pine species: an evaluation of potential climate impacts

Brunet-Navarro, P., Sterck, F.J., Vayreda, J., Martinez-Vilalta, J., Mohren, G.M.J. (2016) Self-thinning in four pine species: an evaluation of potential climate impacts. Annals of Forest Science. 73: 1025-1034.
Enllaç
Doi: 10.1007/s13595-016-0585-y

Resum:

Anthropogenic-driven rapid shifts in tree distribution lead to increased dominance of broadleaf species

Vayreda, J., Martinez-Vilalta, J., Gracia, M., Canadell, J.G., Retana, J. (2016) Anthropogenic-driven rapid shifts in tree distribution lead to increased dominance of broadleaf species. Global Change Biology. 22: 3984-3995.
Enllaç
Doi: 10.1111/gcb.13394

Resum:

The Ecological Forest Inventory of Catalonia: A tool for functional ecology [El Inventario Ecológico y Forestal de Cataluña: una herramienta para la ecología funcional]

Vayreda, J., Martínez-Vilalta, J., Vilà-Cabrera, A. (2016) The Ecological Forest Inventory of Catalonia: A tool for functional ecology [El Inventario Ecológico y Forestal de Cataluña: una herramienta para la ecología funcional]. Ecosistemas. 25: 70-79.
Enllaç
Doi: 10.7818/ECOS.2016.25-3.08

Resum:

SMOS and climate data applicability for analyzing forest decline and forest fires

Chaparro D., Vayreda J., Martinez-Vilalta J., Vall-Llossera M., Banque M., Camps A., Piles M. (2014) SMOS and climate data applicability for analyzing forest decline and forest fires. International Geoscience and Remote Sensing Symposium (IGARSS). : 1069-1072.
Enllaç
Doi: 10.1109/IGARSS.2014.6946613

Resum:

Forests partially reduce climate change impact but, at the same time, this climate forcing threatens forest's health. In recent decades, droughts are becoming more frequent and intense implying an increase of forest decline episodes and forest fires. In this context, global and frequent soil moisture observations from the ESA's SMOS mission could be useful in controlling forest exposure to decline and fires. In this paper, SMOS observations and several climate variables are analyzed together with decline and fire inventories, to study the effect of soil moisture on forest decline during an important drought on summer 2012, and on forest fires in the period 2010-2013. Results show that SMOS-derived soil moisture is a complementary variable in forest decline models. Some of the studied tree species exhibit high probability of decline occurrence under dry conditions. First results showed burned areas to be drier than unburned ones previous to the fire occurrences. © 2014 IEEE.

Llegeix més

Soil carbon stocks and their variability across the forests, shrublands and grasslands of peninsular Spain

Doblas-Miranda E., Rovira P., Brotons L., Martinez-Vilalta J., Retana J., Pla M., Vayreda J. (2013) Soil carbon stocks and their variability across the forests, shrublands and grasslands of peninsular Spain. Biogeosciences. 10: 8353-8361.
Enllaç
Doi: 10.5194/bg-10-8353-2013

Resum:

Accurate estimates of C stocks and fluxes of soil organic carbon (SOC) are needed to assess the impact of climate and land use change on soil C uptake and soil C emissions to the atmosphere. Here, we present an assessment of SOC stocks in forests, shrublands and grasslands of peninsular Spain based on field measurements in more than 900 soil profiles. SOC to a depth of 1 m was modelled as a function of vegetation cover, mean annual temperature, total annual precipitation, elevation and the interaction between temperature and elevation, while latitude and longitude were used to model the correlation structure of the errors. The resulting statistical model was used to estimate SOC in the ∼8 million pixels of the Spanish Forest Map (29.3 × 106 ha). We present what we believe is the most reliable estimation of current SOC in forests, shrublands and grasslands of peninsular Spain thus far, based on the use of spatial modelling, the high number of profiles and the validity and refinement of the data layers employed. Mean concentration of SOC was 8.7 kg m-2, ranging from 2.3 kg m-2 in dry Mediterranean areas to 20.4 kg m -2 in wetter northern locations. This value corresponds to a total stock of 2.544 Tg SOC, which is four times the amount of C estimated to be stored in the biomass of Spanish forests. Climate and vegetation cover were the main variables influencing SOC, with important ecological implications for peninsular Spanish ecosystems in the face of global change. The fact that SOC was positively related to annual precipitation and negatively related to mean annual temperature suggests that future climate change predictions of increased temperature and reduced precipitation may strongly reduce the potential of Spanish soils as C sinks. However, this may be mediated by changes in vegetation cover (e.g. by favouring the development of forests associated to higher SOC values) and exacerbated by perturbations such as fire. The estimations presented here provide a baseline to estimate future changes in soil C stocks and to assess their vulnerability to key global change drivers, and should inform future actions aimed at the conservation and management of C stocks. © 2013 Author(s).

Llegeix més

Patterns and drivers of regeneration of tree species in forests of peninsular Spain

Vayreda J., Gracia M., Martinez-Vilalta J., Retana J. (2013) Patterns and drivers of regeneration of tree species in forests of peninsular Spain. Journal of Biogeography. 40: 1252-1265.
Enllaç
Doi: 10.1111/jbi.12105

Resum:

Aim: Our study aimed to identify and explore the main factors that influence tree recruitment of multiple species at a regional scale across peninsular Spain, an understanding of which is essential for predicting future forest species composition in the face of ongoing environmental change. The study focused on the dynamics of the key transition phase from saplings to adult trees. Location: The forests of peninsular Spain. Methods: We used the extensive network of plots sampled in two consecutive Spanish national forest inventories (> 30,000 plots) to identify the factors that determine regeneration patterns of the 10 most abundant forest species of Spain at relatively large temporal (c. 10 years) and spatial scales (across Spain): five coniferous species of Pinus (pines) and five broadleaved species of the genera Fagus and Quercus. We fitted separate generalized linear models for the pine species and the broadleaved species to assess the response of sapling abundance and ingrowth rate to the spatial variability of climate (temperature, water availability and recent warming), forest structure (tree density, understorey and overstorey canopy cover, and basal area change) and disturbances (previous forest logging, wildfires and grazing). Results: Mean sapling abundance was four times higher for broadleaved species than for pines, while mean annual ingrowth was twice as high. Sapling abundance and ingrowth rate were mainly determined by stand structure, both in pines and broadleaved trees. The direct effects of disturbances and climate were comparatively smaller, and there was no detectable effect of recent warming. Main conclusions: The higher values of ingrowth rate of broadleaved species can be explained by their ability to maintain a higher sapling bank due to their greater shade tolerance. This differential response of pines and broadleaved species to canopy closure suggests a probable increase in broadleaved species at the expense of pines. This transition could occur earlier in stands with faster canopy closure dynamics. Spatially explicit, mixed-species demographic models incorporating both the ingrowth and the tree mortality components are needed for predicting the composition of future forests. © 2013 Blackwell Publishing Ltd.

Llegeix més

Las poblaciones ibéricas de pino albar ante el cambio climático: con la muerte en los talones.

Martínez-Vilalta J, Aguadé D, Banqué M, Barba J, Curiel Yuste J, Galiano L, Garcia N, Gómez M, Heres; AM, López BC, Lloret F, Poyatos R, Retana J, Sus O, Vayreda J, Vilà-Cabrera A (2012) Las poblaciones ibéricas de pino albar ante el cambio climático: con la muerte en los talones. Ecosistemas 21: 15-21.

Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests

Vayreda J., Martinez-Vilalta J., Gracia M., Retana J. (2012) Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests. Global Change Biology. 18: 1028-1041.
Enllaç
Doi: 10.1111/j.1365-2486.2011.02606.x

Resum:

Most temperate forests are accumulating carbon (C) and may continue to do so in the near future. However, the situation may be different in water-limited ecosystems, where the potentially positive effects of C and N fertilization and rising temperatures interact with water availability. In this study, we use the extensive network of plots of two consecutive Spanish national forest inventories to identify the factors that determine the spatial variation of the C stock change, growth, and mortality rate of forests in Peninsular Spain (below- and aboveground). We fitted general linear models to assess the response of C stock change and its components to the spatial variability of climate (in terms of water availability), forest structure (tree density and C stock), previous forest management, and the recent warming trend. Our results show that undisturbed forests in Peninsular Spain are accumulating C at a rate of ~1.4 Mg C ha -1 yr -1, and that forest structural variables are the main determinants of forest growth and C stock change. Water availability was positively related to growth and C accumulation. On the other hand, recent warming has reduced growth rate and C accumulation, especially in wet areas. Spatial variation in mortality (in terms of C loss) was mostly driven by differences in growth rate across plots, and was consistent with 'natural', self-thinning dynamics related to the recent abandonment of forest management over large areas of Spain, with the consequent increase in tree density and competition. Interestingly, the negative effect of warming on forest C accumulation disappears if only managed stands are considered, emphasizing the potential of forest management to mitigate the effects of climate change. However, the effect of forest management was weak and, in some cases, not significant, implying the need of further research on its impact. © 2011 Blackwell Publishing Ltd.

Llegeix més

Pàgines