BioTIME: A database of biodiversity time series for the Anthropocene

Dornelas M., Antão L.H., Moyes F., Bates A.E., Magurran A.E., Adam D., Akhmetzhanova A.A., Appeltans W., Arcos J.M., Arnold H., Ayyappan N., Badihi G., Baird A.H., Barbosa M., Barreto T.E., Bässler C., Bellgrove A., Belmaker J., Benedetti-Cecchi L., Bett B.J., Bjorkman A.D., Błażewicz M., Blowes S.A., Bloch C.P., Bonebrake T.C., Boyd S., Bradford M., Brooks A.J., Brown J.H., Bruelheide H., Budy P., Carvalho F., Castañeda-Moya E., Chen C.A., Chamblee J.F., Chase T.J., Siegwart Collier L., Collinge S.K., Condit R., Cooper E.J., Cornelissen J.H.C., Cotano U., Kyle Crow S., Damasceno G., Davies C.H., Davis R.A., Day F.P., Degraer S., Doherty T.S., Dunn T.E., Durigan G., Duffy J.E., Edelist D., Edgar G.J., Elahi R., Elmendorf S.C., Enemar A., Ernest S.K.M., Escribano R., Estiarte M., Evans B.S., Fan T.-Y., Turini Farah F., Loureiro Fernandes L., Farneda F.Z., Fidelis A., Fitt R., Fosaa A.M., Daher Correa Franco G.A., Frank G.E., Fraser W.R., García H., Cazzolla Gatti R., Givan O., Gorgone-Barbosa E., Gould W.A., Gries C., Grossman G.D., Gutierréz J.R., Hale S., Harmon M.E., Harte J., Haskins G., Henshaw D.L., Hermanutz L., Hidalgo P., Higuchi P., Hoey A., Van Hoey G., Hofgaard A., Holeck K., Hollister R.D., Holmes R., Hoogenboom M., Hsieh C.-H., Hubbell S.P., Huettmann F., Huffard C.L., Hurlbert A.H., Macedo Ivanauskas N., Janík D., Jandt U., Jażdżewska A., Johannessen T., Johnstone J., Jones J., Jones F.A.M., Kang J., Kartawijaya T., Keeley E.C., Kelt D.A., Kinnear R., Klanderud K., Knutsen H., Koenig C.C., Kortz A.R., Král K., Kuhnz L.A., Kuo C.-Y., Kushner D.J., Laguionie-Marchais C., Lancaster L.T., Min Lee C., Lefcheck J.S., Lévesque E., Lightfoot D., Lloret F., Lloyd J.D., López-Baucells A., Louzao M., Madin J.S., Magnússon B., Malamud S., Matthews I., McFarland K.P., McGill B., McKnight D., McLarney W.O., Meador J., Meserve P.L., Metcalfe D.J., Meyer C.F.J., Michelsen A., Milchakova N., Moens T., Moland E., Moore J., Mathias Moreira C., Müller J., Murphy G., Myers-Smith I.H., Myster R.W., Naumov A., Neat F., Nelson J.A., Paul Nelson M., Newton S.F., Norden N., Oliver J.C., Olsen E.M., Onipchenko V.G., Pabis K., Pabst R.J., Paquette A., Pardede S., Paterson D.M., Pélissier R., Peñuelas J., Pérez-Matus A., Pizarro O., Pomati F., Post E., Prins H.H.T., Priscu J.C., Provoost P., Prudic K.L., Pulliainen E., Ramesh B.R., Mendivil Ramos O., Rassweiler A., Rebelo J.E., Reed D.C., Reich P.B., Remillard S.M., Richardson A.J., Richardson J.P., van Rijn I., Rocha R., Rivera-Monroy V.H., Rixen C., Robinson K.P., Ribeiro Rodrigues R., de Cerqueira Rossa-Feres D., Rudstam L., Ruhl H., Ruz C.S., Sampaio E.M., Rybicki N., Rypel A., Sal S., Salgado B., Santos F.A.M., Savassi-Coutinho A.P., Scanga S., Schmidt J., Schooley R., Setiawan F., Shao K.-T., Shaver G.R., Sherman S., Sherry T.W., Siciński J., Sievers C., da Silva A.C., Rodrigues da Silva F., Silveira F.L., Slingsby J., Smart T., Snell S.J., Soudzilovskaia N.A., Souza G.B.G., Maluf Souza F., Castro Souza V., Stallings C.D., Stanforth R., Stanley E.H., Mauro Sterza J., Stevens M., Stuart-Smith R., Rondon Suarez Y., Supp S., Yoshio Tamashiro J., Tarigan S., Thiede G.P., Thorn S., Tolvanen A., Teresa Zugliani Toniato M., Totland Ø., Twilley R.R., Vaitkus G., Valdivia N., Vallejo M.I., Valone T.J., Van Colen C., Vanaverbeke J., Venturoli F., Verheye H.M., Vianna M., Vieira R.P., Vrška T., Quang Vu C., Van Vu L., Waide R.B., Waldock C., Watts D., Webb S., Wesołowski T., White E.P., Widdicombe C.E., Wilgers D., Williams R., Williams S.B., Williamson M., Willig M.R., Willis T.J., Wipf S., Woods K.D., Woehler E.J., Zawada K., Zettler M.L. (2018) BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography. 27: 760-786.
Enllaç
Doi: 10.1111/geb.12729

Resum:

Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2). Time period and grain: BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. Software format:.csv and.SQL. © 2018 The Authors. Global Ecology and Biogeography Published by John Wiley & Sons Ltd

Llegeix més

Functional diversification within bacterial lineages promotes wide functional overlapping between taxonomic groups in a Mediterranean forest soil

Curiel Yuste J., Fernandez-Gonzalez A.J., Fernandez-Lopez M., Ogaya R., Penuelas J., Lloret F. (2014) Functional diversification within bacterial lineages promotes wide functional overlapping between taxonomic groups in a Mediterranean forest soil. FEMS Microbiology Ecology. : 0-0.
Enllaç
Doi: 10.1111/1574-6941.12373

Resum:

We investigated the relationship between taxonomy and functioning of soil bacterial communities in soils from a Mediterranean holm oak forest using a high-throughput DNA pyrosequencing technique. We used nonparametric tests (Mann-Whitney U-test) to evaluate the sensitivity of each single bacterial genus within the community to the fluctuations of plant physiological and environmental abiotic variables, as well as to fluctuations in soil microbial respiration. Within-lineage (phylum/class) functional similarities were evaluated by the distribution of the Mann-Whitney U-test standardized coefficients (z) obtained for all genera within a given lineage. We further defined different ecological niches and within-lineage degree of functional diversification based on multivariate analyses (principal component analyses, PCA). Our results indicate that strong within-lineage functional diversification causes extensive functional overlapping between lineages, which hinders the translation of taxonomic diversity into a meaningful functional classification of bacteria. Our results further suggest a widespread colonization of possible ecological niches as taxonomic diversity increases. While no strong functional differentiation could be drawn from the analyses at the phylum/class level, our results suggest a strong ecological niche differentiation of bacteria based mainly on the distinct response of Gram-positive and Gram-negative bacteria to fluctuations in soil moisture. We investigated the relation between taxonomy and functioning of soil bacterial communities in soils from a Mediterranean Holm-oak forest using a high throughput DNA pyrosequencing technique. © 2014 Federation of European Microbiological Societies.

Llegeix més

Strong functional stability of soil microbial communities under semiarid Mediterranean conditions and subjected to long-term shifts in baseline precipitation

Curiel Yuste J., Fernandez-Gonzalez A.J., Fernandez-Lopez M., Ogaya R., Penuelas J., Sardans J., Lloret F. (2014) Strong functional stability of soil microbial communities under semiarid Mediterranean conditions and subjected to long-term shifts in baseline precipitation. Soil Biology and Biochemistry. 69: 223-233.
Enllaç
Doi: 10.1016/j.soilbio.2013.10.045

Resum:

We investigated the effect of soil microclimate on the structure and functioning of soil microbial communities in a Mediterranean Holm-oak forest subjected to 10 years of partial rain exclusion manipulations, simulating average drought conditions expected in Mediterranean areas for the following decades. We applied a high throughput DNA pyrosequencing technique coupled to parallel measurements of microbial respiration (RH) and temperature sensitivity of microbial respiration (Q10). Some consistent changes in the structure of bacterial communities suggest a slow process of community shifts parallel to the trend towards oligotrophy in response to long-term droughts. However, the structure of bacterial communities was mainly determined by short-term environmental fluctuations associated with sampling date (winter, spring and summer) rather than long-term (10 years) shifts in baseline precipitation. Moreover, long-term drought did not exert any chronic effect on the functioning of soil microbial communities (RH and Q10), emphasizing the functional stability of these communities to this long-term but mild shifts in water availability. We hypothesize that the particular conditions of the Mediterranean climate with strong seasonal shifts in both temperature and soil water availability but also characterized by very extreme environmental conditions during summer, was acting as a strong force in community assembling, selecting phenotypes adapted to the semiarid conditions characterizing Mediterranean ecosystems. Relations of climate with the phylogenetic structure and overall diversity of the communities as well as the distribution of the individual responses of different lineages (genera) to climate confirmed our hypotheses, evidencing communities dominated by thermotolerant and drought-tolerant phenotypes. © 2013 Elsevier Ltd.

Llegeix més

Inter-annual variability of seed rain and seedling establishment of two woody Mediterranean species under field-induced drought and warming

del Cacho M., Estiarte M., Peñuelas J., Lloret F. (2013) Inter-annual variability of seed rain and seedling establishment of two woody Mediterranean species under field-induced drought and warming. Population Ecology. 55: 277-289.
Enllaç
Doi: 10.1007/s10144-013-0365-6

Resum:

We aimed to assess the impact of warmer and drier climate change conditions on the seed rain and seedling establishment of Globularia alypum L. and Erica multiflora L., two dominant species in Western coastal Mediterranean shrublands. We performed a non-intrusive field experiment in which we increased the night-time temperatures and excluded spring and autumn rainfall. We monitored the seed rain over 5 years and the seedling recruitment over 9 years on these experimental plots. Seed rain of E. multiflora was enhanced by warming treatment in relation to control, and higher annual rainfall, while seed rain of G. alypum was increased by drought treatment in relation to control, dry years and higher minimum annual temperature. Annual rainfall enhanced the seedling emergence of both species, which also positively correlated with annual mean temperatures. Drought treatment significantly decreased seedling emergence for both species, which was higher in open areas than below vegetation cover. The seedling survival of both species diminished at closer distances to competing neighbours, and in G. alypum seedling survival was higher with lower annual mean temperatures and higher annual rainfall, but also in drought treatment, which have experienced vegetation cover decline. The study confirms that the increasing aridity in Mediterranean ecosystems would constrain the early stages of development in typical co-occurring shrubs. However, there are contrasting responses to climatic conditions between species recruitment, which might favour changes in vegetation through modification of species relative abundance. © 2013 The Society of Population Ecology and Springer Japan.

Llegeix més

Reproductive output in Mediterranean shrubs under climate change experimentally induced by drought and warming

del Cacho M., Penuelas J., Lloret F. (2013) Reproductive output in Mediterranean shrubs under climate change experimentally induced by drought and warming. Perspectives in Plant Ecology, Evolution and Systematics. 15: 319-327.
Enllaç
Doi: 10.1016/j.ppees.2013.07.001

Resum:

The effects of climate change on plant reproductive performance affects the sequence of different plant reproductive stages from flowering to seed production and viability, as well as the network of relationships between them. These effects are expected to respond to different components of climate change, such as temperature and water availability, and may be sensitive to differences in species phenology.We used long-term experimental drought and warming treatments to study the effect of climate change on flower production, fruit and seed-set, seed size and seed germination rate (proportion of germinating seeds) in three Mediterranean shrubs coexisting in a coastal shrubland.Larger plants produced significantly more flowers in all three species, and higher fruit-set in Dorycnium pentaphyllum. Flower production was reduced in drought and warming treatments in the spring-flowering species D. pentaphyllum and Helianthemum syriacum, but not in the autumn-winter species Erica multiflora, which increased flowering in the warming treatment. However, the drought treatment eventually resulted in a decreased seed-set in E. multiflora. Structural equation modelling revealed strong correlations between the sequential reproductive stages. Specifically, flower density in inflorescences determined seed-set in H. syriacum, and seed size and germination rate in E. multiflora. Nevertheless, the relevance of relationships between reproductive traits changed between climatic treatments: in D. pentaphyllum a direct relationship between plant size and seed size only arised in the drought treatment, while in H. syriacum climate treatments resulted in a stronger relationship between the number of flowers and seed-set.This experimental study shows the ability of changing climatic variables to determine the reproductive sequential process of woody species. We show that several parameters of the reproductive performance of some Mediterranean species are affected by drought and warming treatments simulating climate change, highlighting the importance of changes in both water availability and temperature, and the sequential relationship between reproductive stages. Phenological patterns also contribute to species' differential responses to climatic change, due to the relationship of these patterns with resource availability, environmental conditions and plant-pollinator interactions. © 2013.

Llegeix més

Effects of climate change on leaf litter decomposition across post-fire plant regenerative groups

Saura-Mas S., Estiarte M., Peñuelas J., Lloret F. (2012) Effects of climate change on leaf litter decomposition across post-fire plant regenerative groups. Environmental and Experimental Botany. 77: 274-282.
Enllaç
Doi: 10.1016/j.envexpbot.2011.11.014

Resum:

Decomposition is a determining factor for the functioning of ecosystems because litter dynamics (litter fall and litter decomposition) constitute a key process in the regulation of the recycling of carbon and nutrients. We studied the litter decomposition properties of a set of 19 Mediterranean-basin woody species with different post-fire regenerative strategies (resprouters and non-resprouters), under experimental climate manipulation (simulating warming and drought) over a 2-year period. We show that climate change modifies litter decomposition of these Mediterranean woody species as litter contributions to the soil (g/year) were lower under drought experimental conditions. Species with different post-fire regeneration performance showed different leaf decomposition patterns, though these patterns were influenced by the taxonomical affiliation of the species. As expected, the mass loss of the non-resprouter litter, after 2 years, was higher than in resprouters. Non-resprouters showed higher nutrient concentration per mass of leaf litter after 2 years of experiment than resprouters, possibly because they have lost more C-rich biomass, allowing high nutrients concentration in the remaining litter. That would apply particularly to P as litter N:P ratio was lower in non-resprouters than in resprouters. This study suggests that, in Mediterranean ecosystems, nutrients' return from leaf litter to the soil will be slower under the projected future drier conditions. Furthermore, changes in fire regimes that lead to modifications in the abundance of post-fire regenerative groups are likely to affect ecosystem's functional properties. Thus, if new fire regimes enhance non-resprouters' abundance, we can expect a greater return of organic matter contributions to the soil and a lower litter N:P. © 2011 Elsevier B.V.

Llegeix més

Effect of experimentally induced climate change on the seed bank of a Mediterranean shrubland

del Cacho M., Saura-Mas S., Estiarte M., Peñuelas J., Lloret F. (2012) Effect of experimentally induced climate change on the seed bank of a Mediterranean shrubland. Journal of Vegetation Science. 23: 280-291.
Enllaç
Doi: 10.1111/j.1654-1103.2011.01345.x

Resum:

Questions: We studied the soil seed bank under field-simulated climate change conditions and addressed the following questions: Is the effect of climate change on seed banks more evident in areas without vegetation? Are short-lived species more sensitive to this directional climate change than long-lived species? Location: A Mediterranean shrubland in the Garraf Natural Park, NE Spain. Methods: Directional climate change was induced through manipulating temperature and rainfall over almost 9 yr. Soil seed banks were assessed using the seedling emergence method. Results: Under drought and warming treatments, the total number of germinating seeds decreased by 47% and 43%, respectively, in non-vegetated areas. In contrast, no effect was found for areas with vegetation cover. Reduced seed bank density was particularly pronounced for short-lived species (therophytes plus hemicryptophytes), which dropped by 60% and 69%, respectively, in the drought and warming treatments in open areas, while no significant changes were observed under vegetation. In non-vegetated areas, the reduction in seed bank density was similar in all species. In contrast, a shift in the relative abundance of seed bank species was apparent under shrub canopies. Conclusions: As experimental climatic manipulations of Mediterranean shrublands demonstrate a trend towards an increase in open areas under drought conditions, a decrease in the seed bank of short-lived species in these areas may potentially result in a positive feedback that would accentuate the loss of vegetation cover under predicted future climate conditions. © 2011 International Association for Vegetation Science.

Llegeix més

Llebot E. (ed). Impactes, vulnerabilitat i retroalimentacions climàtiques als ecosistemes terrestres catalans. Segon informe sobre el canvi climàtic a Catalunya.

Peñuelas J, Filella I, Estiarte M, Ogaya R, Llusià J, Sardans J, Jump A, Curiel J, Carnicer J, Rutishauser T, Rico L, Keenan T, Garbulsky M, Coll M, Diaz de Quijano M, Seco R, Rivas-Ubach A, Silva J, Boada M, Stefanescu C, Lloret F, Terradas J (2011) Llebot E. (ed). Impactes, vulnerabilitat i retroalimentacions climàtiques als ecosistemes terrestres catalans. Segon informe sobre el canvi climàtic a Catalunya. Institut d'Estudis Catalans i Generalitat de Catalunya. Barcelona, pp. 373-407.

Solving the conundrum of plant species coexistence: Water in space and time matters most

Peñuelas J., Terradas J., Lloret F. (2011) Solving the conundrum of plant species coexistence: Water in space and time matters most. New Phytologist. 189: 5-8.
Enllaç
Doi: 10.1111/j.1469-8137.2010.03570.x

Resum:

[No abstract available]

Llegeix més

Intégration des effets du changement climatique sur les forêts méditerranéennes : observation, expérimentation, modélisation et gestion p. 351. Introducing the climate change effects on Mediterranean forest ecosystems: observation, experimentation, simul

Peñuelas J, Gracia C, Filella I, Jump A, Carnicer J, Coll M, Lloret F, Curiel J, Estiarte M, Rutishauser T, Ogaya R, LLusiá J, Sardans J (2010) Intégration des effets du changement climatique sur les forêts méditerranéennes : observation, expérimentation, modélisation et gestion p. 351. Introducing the climate change effects on Mediterranean forest ecosystems: observation, experimentation, simul ation and management . Forêt Méditerranéenne XXXI, nº 4 pp. 357. ISSN 0245-484X.

Pàgines