Chemical cues involved in the attraction of the oligolectic bee Hoplitis adunca to its host plant Echium vulgare

Filella I., Bosch J., Llusià J., Peñuelas A., Peñuelas J. (2011) Chemical cues involved in the attraction of the oligolectic bee Hoplitis adunca to its host plant Echium vulgare. Biochemical Systematics and Ecology. 39: 498-508.
Enllaç
Doi: 10.1016/j.bse.2011.07.008

Resum:

Host recognition is a key process in oligolectic bees but the mechanisms through which they find and recognize appropriate pollen host plant are not entirely clear. Hoplitis adunca is a monolectic bee collecting pollen only from Echium spp. (Boraginaceae). We aimed to test whether Echium vulgare floral scent plays a major role in the attraction of H. adunca females, and to identify components of E. vulgare scent that may be involved in this specific attraction. We used a combination of behavioral and chemical (GC/GC-MS, PTR-MS) analyses. In order to identify the chemical cues likely to be involved in the specific attraction of H. adunca, we compared the scent of fresh flowers, nectar, pollen, and whole plants of E. vulgare and Anchusa officinalis, another Boraginaceae, which does not attract H. adunca. H. adunca females were attracted to the scent of E. vulgare flowers when offered against a blank or against the scent of A. officinalis flowers. However, H. adunca females were not attracted to the scent of A. officinalis flowers when offered against a blank. The emission spectra of the two plant species differed markedly, as did the emission spectra of various flower components (pollen, nectar and whole flowers) within a species. Pollen presented a low volatile release, but emitted significantly higher amounts of mass 55 (butanal, 1,3-butadiene, or other volatiles of molecular mass 54), and mass 83 (hexanal, hexenols, hexenyl acetate, or other volatiles of molecular mass 82) in E. vulgare than in A. officinalis. Nectar produced a particular emission spectrum with high emission rates of masses 109 and 123. Mass 109 may likely correspond to 1,4-benzoquinone, a volatile specifically measured in E. vulgare in parallel studies to this one. The flower emission spectrum was mainly a combination of the pollen and the nectar scents, although it also contained additional volatile compounds such as those of mass 63 or mass 81. As for terpenes, E. vulgare emitted limonene, longicyclene, junipene, trans-caryophyllene and α-humulene, that were not detected in A. officinalis, and the most emitted monoterpenes were α-pinene, junipene and limonene whereas the most emitted terpenoid by A. officinalis was α-pinene. After identifying these chemical cues, olfactory/behavioural assays with specific volatiles and combinations of volatiles are necessary to understand the chemical interactions of the H. adunca-E. vulgare system. © 2011 Elsevier Ltd.

Llegeix més

The role of frass and cocoon volatiles in host location by monodontomerus aeneus, a parasitoid of megachilid solitary bees

Filella I., Bosch J., Llusiá J., Seco R., Peñuelas J. (2011) The role of frass and cocoon volatiles in host location by monodontomerus aeneus, a parasitoid of megachilid solitary bees. Environmental Entomology. 40: 126-131.
Enllaç
Doi: 10.1603/EN10165

Resum:

Monodontomerus aeneus (Fonscolombe) is a parasitic wasp that oviposits on the prepupae and pupae of Osmia cornuta (Latreille) and other solitary bee species. A two-armed olfactometer was used to test the olfactory attractiveness of O. cornuta prepupae, cocoon, and larval frass to female M. aeneus. Both cocoon and frass attracted the female parasitoids, but frass alone was more attractive than the cocoon and the cocoon with frass was more attractive than frass alone. Female parasitoids were not attracted by the host prepupa. M33 (methanol) was the organic volatile most emitted by cocoons and m61 (acetic acid) was the compound most emitted by frass. However, cocoons showed higher emission for almost all compounds, including m61 (acetic acid). Although acetic acid alone attracted M. aeneus, a complex volatile signal is probably involved in the attraction process because the ratio of acetic acid and acetaldehyde characteristic of the frass was more attractive than other ratios. © 2011 Entomological Society of America.

Llegeix més