A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean Region: Beyond drought effects

Doblas-Miranda, E., Alonso, R., Arnan, X., Bermejo, V., Brotons, L., de las Heras, J., Estiarte, M., Hódar, J.A., Llorens, P., Lloret, F., López-Serrano, F.R., Martínez-Vilalta, J., Moya, D., Peñuelas, J., Pino, J., Rodrigo, A., Roura-Pascual, N., Valladares, F., Vilà, M., Zamora, R., Retana, J. (2017) A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean Region: Beyond drought effects. Global and Planetary Change. 148: 42-54.
Enllaç
Doi: 10.1016/j.gloplacha.2016.11.012

Resum:

Beyond predator satiation: Masting but also the effects of rainfall stochasticity on weevils drive acorn predation

Espelta, J.M., Arias-Leclaire, H., Fernandez-Martinez, M., Doblas-Miranda, E., Muñoz, A., Bonal, R. (2017) Beyond predator satiation: Masting but also the effects of rainfall stochasticity on weevils drive acorn predation. Ecosphere. 8: 0-0.
Enllaç
Doi: 10.1002/ecs2.1836

Resum:

Localized effects of coarse woody material on soil oribatid communities diminish over 700 years of stand development in black-spruce-feathermoss forests

Doblas-Miranda E., Work T.T. (2015) Localized effects of coarse woody material on soil oribatid communities diminish over 700 years of stand development in black-spruce-feathermoss forests. Forests. 6: 914-928.
Enllaç
Doi: 10.3390/f6040914

Resum:

In the black-spruce clay-belt region of Western Québec, soil nutrients are limited due to paludification. Under paludified conditions, nutrient subsidies from decomposing surface coarse woody material (CWM) may be important particularly during the later stages of ecosystem development when deadwood from senescent trees has accumulated. For soil organisms, CWM can alter microclimatic conditions and resource availability. We compared abundance and species richness of oribatid mites below or adjacent to CWM across a chronosequence which spans ca. 700 years of stand development. We hypothesized that oribatid abundance and richness would be greater under the logs, particularly in later stages of forest development when logs may act as localized sources of carbon and nutrients in the paludified substrate. However, oribatid density was lower directly under CWM than adjacent to CWM but these differences were attenuated with time. We suggest that oribatids may be affected by soil compaction and also that such microarthropods are most likely feeding on recently fallen leaf litter, which may be rendered inaccessible by the presence of overlying CWM. This may also explain the progressive decline in oribatid density and diversity with time, which are presumably caused by decreases in litter availability due to self-thinning and Sphagnum growth. This is also supported by changes of different oribatid trophic groups, as litter feeders maintain different numbers relative to CWM with time while more generalist fungi feeders only show differences related to position in the beginning of the succession. © 2015 by the authors; licensee MDPI, Basel, Switzerland.

Llegeix més

Intercropping trees' effect on soil oribatid diversity in agro-ecosystems

Doblas-Miranda E., Paquette A., Work T.T. (2014) Intercropping trees' effect on soil oribatid diversity in agro-ecosystems. Agroforestry Systems. 88: 671-678.
Enllaç
Doi: 10.1007/s10457-014-9680-y

Resum:

The benefits of tree-based intercropping (TBI) compared to conventional agro-ecosystems in North America could include climate change mitigation and adaptation, although enhancing resilience to climate change through increasing soil diversity remains poorly explored. Diversity of soil microarthropods supports a series of ecological services that may be altered by soil desiccation due to climate change. Here we study the effect of red oak and hybrid poplar TBI on soil oribatid mite species assemblages associated to forage crops (mix of Timothy-grass and red clover). Abundance and species density of oribatids were affected by treatment, depth and the interaction of both variables. Abundance of oribatid mites was significantly lower in the oak TBI, showing a homogeneous vertical distribution in opposition to a decreasing with depth distribution under poplar TBI and conventional crops. Species density was significantly higher in the conventional crop, showing again significant differences in depth that were not present in both TBI treatments. Distance to tree did not affect mite abundance nor species density. TBI increased oribatid richness (obtained by sample-based rarefaction and extrapolation) only in the presence of oaks. The distribution of oribatids was strongly associated to tree fine root biomass and stress the importance of underground organic resources for the oribatid fauna and their ecological functions. If increasing drought associated with climate change desiccates superficial levels of agro-ecosystem soils, deeper sources of organic resources, such as tree roots, should become crucial in the maintenance of diverse microarthropod communities. © 2014 Springer Science+Business Media Dordrecht.

Llegeix més

Soil carbon stocks and their variability across the forests, shrublands and grasslands of peninsular Spain

Doblas-Miranda E., Rovira P., Brotons L., Martinez-Vilalta J., Retana J., Pla M., Vayreda J. (2013) Soil carbon stocks and their variability across the forests, shrublands and grasslands of peninsular Spain. Biogeosciences. 10: 8353-8361.
Enllaç
Doi: 10.5194/bg-10-8353-2013

Resum:

Accurate estimates of C stocks and fluxes of soil organic carbon (SOC) are needed to assess the impact of climate and land use change on soil C uptake and soil C emissions to the atmosphere. Here, we present an assessment of SOC stocks in forests, shrublands and grasslands of peninsular Spain based on field measurements in more than 900 soil profiles. SOC to a depth of 1 m was modelled as a function of vegetation cover, mean annual temperature, total annual precipitation, elevation and the interaction between temperature and elevation, while latitude and longitude were used to model the correlation structure of the errors. The resulting statistical model was used to estimate SOC in the ∼8 million pixels of the Spanish Forest Map (29.3 × 106 ha). We present what we believe is the most reliable estimation of current SOC in forests, shrublands and grasslands of peninsular Spain thus far, based on the use of spatial modelling, the high number of profiles and the validity and refinement of the data layers employed. Mean concentration of SOC was 8.7 kg m-2, ranging from 2.3 kg m-2 in dry Mediterranean areas to 20.4 kg m -2 in wetter northern locations. This value corresponds to a total stock of 2.544 Tg SOC, which is four times the amount of C estimated to be stored in the biomass of Spanish forests. Climate and vegetation cover were the main variables influencing SOC, with important ecological implications for peninsular Spanish ecosystems in the face of global change. The fact that SOC was positively related to annual precipitation and negatively related to mean annual temperature suggests that future climate change predictions of increased temperature and reduced precipitation may strongly reduce the potential of Spanish soils as C sinks. However, this may be mediated by changes in vegetation cover (e.g. by favouring the development of forests associated to higher SOC values) and exacerbated by perturbations such as fire. The estimations presented here provide a baseline to estimate future changes in soil C stocks and to assess their vulnerability to key global change drivers, and should inform future actions aimed at the conservation and management of C stocks. © 2013 Author(s).

Llegeix més

Land-cover change effects on trophic interactions: Current knowledge and future challenges in research and conservation

Herrera J.M., Doblas-Miranda E. (2013) Land-cover change effects on trophic interactions: Current knowledge and future challenges in research and conservation. Basic and Applied Ecology. 14: 1-11.
Enllaç
Doi: 10.1016/j.baae.2012.11.008

Resum:

Understanding the effects of land-cover alterations on ecosystem functioning has become a major challenge in ecological research during the last decade. This has stimulated a rapid growth in research investigating the links between land-cover change and biotic interactions, but to date no study has evaluated the progress towards achieving this scientific goal. With the aim of identifying gaps in current knowledge and challenging research areas for the future, we reviewed the scientific literature published during the last decade (1998-2010) investigating land-cover change effects on trophically-mediated biotic interactions. Our results reveal a disproportionate focus on particular trophic interactions and ecosystem types. Furthermore, in most cases, the measurement of trophic interactions is carried out neglecting the identity of the interacting species and the interrelation between the type of land-cover change effects. Finally, inappropriate temporal scales are applied to cope with spatiotemporal resource fluctuations for the interacting species. We suggest that the ongoing patterns and trends of research hamper efforts to achieve a truly comprehensive understanding of the effects of land-cover alterations on trophic interactions, and hence on ecosystem functioning in human-impacted landscapes. We therefore recommend alternative research trends and indicate gaps in current knowledge that need to be filled. Furthermore, we highlight that these biases could also limit the effectiveness of management actions aimed at ensuring the resilience and long-term conservation of natural habitats worldwide. © 2012 Gesellschaft für Ökologie.

Llegeix més

Spatio-temporal dynamics of soil food webs in a Mediterranean arid ecosystem.

Doblas-Miranda E, Sánchez-Piñero F, González-Megías A (2012) Spatio-temporal dynamics of soil food webs in a Mediterranean arid ecosystem. In: (Williams G.S. Ed.). Mediterranean Ecosystems: Dynamics, Management and Conservation. Nova Science Publishers. 978-1-61209-146-4.

The MONTES Consolider project and Mediterranean forests under global change: the challenge of interdisciplinary research and manager involvement.

Doblas-Miranda E, Retana J, Valladares F (2012) The MONTES Consolider project and Mediterranean forests under global change: the challenge of interdisciplinary research and manager involvement. Planet Under Pressure. Londres. 26-29 March (pòster).

Merging research agendas to find global patterns: elevation and latitudinal gradients of forest regeneration across Europe.

Valladares F, García-Rabasa S, Benavides R, Granda E, Doblas-Miranda E, Retana J (2012) Merging research agendas to find global patterns: elevation and latitudinal gradients of forest regeneration across Europe. Planet Under Pressure. Londres. 26-29 March (pòster).

El proyecto Montes Consolider: los montes españoles y el cambio global, amenazas y oportunidades.

Doblas-Miranda E, Vermejo V, Retana J, Alonso R (2012) El proyecto Montes Consolider: los montes españoles y el cambio global, amenazas y oportunidades. Vertices 16: 28–32.

Pàgines