Ordinary and extraordinary movement behaviour of small resident fish within a mediterranean marine protected area

Aspillaga E., Bartumeus F., Linares C., Starr R.M., López-Sanz A., Díaz D., Zabala M., Hereu B. (2016) Ordinary and extraordinary movement behaviour of small resident fish within a mediterranean marine protected area. PLoS ONE. 11: 0-0.
Enllaç
Doi: 10.1371/journal.pone.0159813

Resum:

It is important to account for the movement behaviour of fishes when designing effective marine protected areas (MPAs). Fish movements occur across different spatial and temporal scales and understanding the variety of movements is essential to make correct management decisions. This study describes in detail the movement patterns of an economically and commercially important species, Diplodus sargus, within a well-enforced Mediterranean MPA. We monitored horizontal and vertical movements of 41 adult individuals using passive acoustic telemetry for up to one year. We applied novel analysis and visualization techniques to get a comprehensive view of a wide range of movements. D. sargus individuals were highly territorial, moving within small home ranges (< 1 km2), inside which they displayed repetitive diel activity patterns. Extraordinary movements beyond the ordinary home range were observed under two specific conditions. First, during stormy events D. sargus presented a sheltering behaviour, moving to more protected places to avoid the disturbance. Second, during the spawning season they made excursions to deep areas (> 50 m), where they aggregated to spawn. This study advances our understanding about the functioning of an established MPA and provides important insights into the biology and management of a small sedentary species, suggesting the relevance of rare but important fish behaviours. © 2016 Aspillaga et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Llegeix més

Foraging success under uncertainty: Search tradeoffs and optimal space use

Bartumeus, F., Campos, D., Ryu, W.S., Lloret-Cabot, R., Méndez, V., Catalan, J. (2016) Foraging success under uncertainty: Search tradeoffs and optimal space use. Ecology Letters. : 0-0.
Enllaç
Doi: 10.1111/ele.12660

Resum:

Variability in individual activity bursts improves ant foraging success

Campos, D., Bartumeus, F., Mendez, V., Andrade, J.S., Espadaler, X. (2016) Variability in individual activity bursts improves ant foraging success. Journal of the Royal Society Interface. 13: 0-0.
Enllaç
Doi: 10.1098/rsif.2016.0856

Resum:

Expectation-maximization binary clustering for behavioural annotation

Garriga J., Palmer J.R.B., Oltra A., Bartumeus F. (2016) Expectation-maximization binary clustering for behavioural annotation. PLoS ONE. 11: 0-0.
Enllaç
Doi: 10.1371/journal.pone.0151984

Resum:

The growing capacity to process and store animal tracks has spurred the development of new methods to segment animal trajectories into elementary units of movement. Key challenges for movement trajectory segmentation are to (i) minimize the need of supervision, (ii) reduce computational costs, (iii) minimize the need of prior assumptions (e.g. simple parametrizations), and (iv) capture biologically meaningful semantics, useful across a broad range of species. We introduce the Expectation-Maximization binary Clustering (EMbC), a general purpose, unsupervised approach to multivariate data clustering. The EMbC is a variant of the Expectation-Maximization Clustering (EMC), a clustering algorithm based on the maximum likelihood estimation of a Gaussian mixture model. This is an iterative algorithm with a closed form step solution and hence a reasonable computational cost. The method looks for a good compromise between statistical soundness and ease and generality of use (by minimizing prior assumptions and favouring the semantic interpretation of the final clustering). Here we focus on the suitability of the EMbC algorithm for behavioural annotation of movement data. We show and discuss the EMbC outputs in both simulated trajectories and empirical movement trajectories including different species and different tracking methodologies. We use synthetic trajectories to assess the performance of EMbC compared to classic EMC and Hidden Markov Models. Empirical trajectories allow us to explore the robustness of the EMbC to data loss and data inaccuracies, and assess the relationship between EMbC output and expert label assignments. Additionally, we suggest a smoothing procedure to account for temporal correlations among labels, and a proper visualization of the output for movement trajectories. Our algorithm is available as an R-package with a set of complementary functions to ease the analysis. © 2016 Garriga et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Llegeix més

Active and reactive behaviour in human mobility: The influence of attraction points on pedestrians

Gutiérrez-Roig M., Sagarra O., Oltra A., Palmer J.R.B., Bartumeus F., Díaz-Guilera A., Perelló J. (2016) Active and reactive behaviour in human mobility: The influence of attraction points on pedestrians. Royal Society Open Science. 3: 0-0.
Enllaç
Doi: 10.1098/rsos.160177

Resum:

Human mobility is becoming an accessible field of study, thanks to the progress and availability of tracking technologies as a common feature of smart phones. We describe an example of a scalable experiment exploiting these circumstances at a public, outdoor fair in Barcelona (Spain). Participants were tracked while wandering through an open space with activity stands attracting their attention. We develop a general modelling framework based on Langevin dynamics, which allows us to test the influence of two distinct types of ingredients on mobility: reactive or context-dependent factors, modelled by means of a force field generated by attraction points in a given spatial configuration and active or inherent factors, modelled from intrinsic movement patterns of the subjects. The additive and constructive framework model accounts for some observed features. Starting with the simplest model (purely random walkers) as a reference, we progressively introduce different ingredients such as persistence, memory and perceptual landscape, aiming to untangle active and reactive contributions and quantify their respective relevance. The proposed approach may help in anticipating the spatial distribution of citizens in alternative scenarios and in improving the design of public events based on a facts-based approach. © 2016 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License.

Llegeix més

T cell migration, search strategies and mechanisms

Krummel M.F., Bartumeus F., Gérard A. (2016) T cell migration, search strategies and mechanisms. Nature Reviews Immunology. 16: 193-201.
Enllaç
Doi: 10.1038/nri.2015.16

Resum:

T cell migration is essential for T cell responses; it allows for the detection of cognate antigen at the surface of antigen-presenting cells and for interactions with other cells involved in the immune response. Although appearing random, growing evidence suggests that T cell motility patterns are strategic and governed by mechanisms that are optimized for both the activation stage of the cell and for environment-specific cues. In this Opinion article, we discuss how the combined effects of T cell-intrinsic and -extrinsic forces influence T cell motility patterns in the context of highly complex tissues that are filled with other cells involved in parallel motility. In particular, we examine how insights from 'search theory' can be used to describe T cell movement across an 'exploitation-exploration trade-off' in the context of activation versus effector function and lymph nodes versus peripheral tissues. © 2016 Macmillan Publishers Limited.

Llegeix més

Signatures of chaos in animal search patterns

Reynolds A.M., Bartumeus F., Kolzsch A., Van De Koppel J. (2016) Signatures of chaos in animal search patterns. Scientific Reports. 6: 0-0.
Enllaç
Doi: 10.1038/srep23492

Resum:

One key objective of the emerging discipline of movement ecology is to link animal movement patterns to underlying biological processes, including those operating at the neurobiological level. Nonetheless, little is known about the physiological basis of animal movement patterns, and the underlying search behaviour. Here we demonstrate the hallmarks of chaotic dynamics in the movement patterns of mud snails (Hydrobia ulvae) moving in controlled experimental conditions, observed in the temporal dynamics of turning behaviour. Chaotic temporal dynamics are known to occur in pacemaker neurons in molluscs, but there have been no studies reporting on whether chaotic properties are manifest in the movement patterns of molluscs. Our results suggest that complex search patterns, like the Levy walks made by mud snails, can have their mechanistic origins in chaotic neuronal processes. This possibility calls for new research on the coupling between neurobiology and motor properties.

Llegeix més