Sea spray influences water chemical composition of Mediterranean semi-natural springs

Fernández-Martínez M., Margalef O., Sayol F., Asensio D., Bagaria G., Corbera J., Sabater F., Domene X., Preece C. (2019) Sea spray influences water chemical composition of Mediterranean semi-natural springs. Catena. 173: 414-423.
Enllaç
Doi: 10.1016/j.catena.2018.10.035

Resum:

Sea spray aerosol (SSA) is responsible for the large-scale transfer of particles from the sea to the land, leading to significant deposition of a range of ions, predominantly Na+, K+, Mg2+ Ca2+, and Cl−. Up to now, there has been little research into the effects of SSA on spring water chemistry. Therefore, we sampled 303 semi-natural springs across Catalonia (NE Iberian Peninsula) and analysed the concentrations of 20 different ions and elements, and determined the impact of SSA (using distance to the coast as a proxy) as well as climate, lithology and human disturbances. We found that distance to the coast had a clear effect on the water chemical composition of springs, while accounting for potentially confounding factors such as anthropogenic water pollution (nitrate, NO3 −), differences in lithology and annual rainfall. Our results showed that springs located closer to the coast had higher Cl−, SO4 2−, Na+, Mg2+, K+ and Ca2+ concentrations than those of springs located further away. Precipitation was generally negatively correlated with the concentration of almost all elements analysed. The concentration of NO3 − increased with distance to the coast, concurrently with farming activities, located mainly inland in the study area. These results demonstrate that SSA has an important effect on the groundwater of coastal zones, up to a distance of around 70 km from the coastline. This analysis reveals the main natural and human processes that influence spring water chemistry in this Mediterranean region, information that could be helpful in similar regions for ecological studies, water quality policies, and for the improvement of predictions in the current context of global change. © 2018 Elsevier B.V.

Llegeix més

Effects of past and current drought on the composition and diversity of soil microbial communities

Preece C., Verbruggen E., Liu L., Weedon J.T., Peñuelas J. (2019) Effects of past and current drought on the composition and diversity of soil microbial communities. Soil Biology and Biochemistry. 131: 28-39.
Enllaç
Doi: 10.1016/j.soilbio.2018.12.022

Resum:

Drought is well known to have strong effects on the composition and activity of soil microbial communities, and may be determined by drought history and drought duration, but the characterisation and prediction of these effects remains challenging. This is because soil microbial communities that have previously been exposed to drought may change less in response to subsequent drought events, due to the selection of drought-resistant taxa. We set up a 10-level drought experiment to test the effect of water stress on the composition and diversity of soil bacterial and fungal communities. We also investigated the effect of a previous long-term drought on communities in soils with different historical precipitation regimes. Saplings of the holm oak, Quercus ilex L., were included to assess the impact of plant presence on the effects of the drought treatment. The composition and diversity of the soil microbial communities were analysed using DNA amplicon sequencing of bacterial and fungal markers and the measurement of phospholipid fatty acids. The experimental drought affected the bacterial community much more than the fungal community, decreasing alpha diversity and proportion of total biomass, whereas fungal diversity tended to increase. The experimental drought altered the relative abundances of specific taxa of both bacteria and fungi, and in many cases these effects were modified by the presence of the plant and soil origin. Soils with a history of drought had higher overall bacterial alpha diversity at the end of the experimental drought, presumably because of adaptation of the bacterial community to drought conditions. However, some bacterial taxa (e.g. Chloroflexi) and fungal functional groups (plant pathogens and saprotrophic yeasts) decreased in abundance more in the pre-droughted soils. Our results suggest that soil communities will not necessarily be able to maintain the same functions during more extreme or more frequent future droughts, when functions are influenced by community composition. Drought is likely to continue to affect community composition, even in soils that are acclimated to it, tending to increase the proportion of fungi and reduce the proportion and diversity of bacteria. © 2018 Elsevier Ltd

Llegeix més