Geothermally warmed soils reveal persistent increases in the respiratory costs of soil microbes contributing to substantial C losses

Marañón-Jiménez S., Soong J.L., Leblans N.I.W., Sigurdsson B.D., Peñuelas J., Richter A., Asensio D., Fransen E., Janssens I.A. (2018) Geothermally warmed soils reveal persistent increases in the respiratory costs of soil microbes contributing to substantial C losses. Biogeochemistry. : 1-16.
Enllaç
Doi: 10.1007/s10533-018-0443-0

Resum:

Increasing temperatures can accelerate soil organic matter decomposition and release large amounts of CO2 to the atmosphere, potentially inducing positive warming feedbacks. Alterations to the temperature sensitivity and physiological functioning of soil microorganisms may play a key role in these carbon (C) losses. Geothermally active areas in Iceland provide stable and continuous soil temperature gradients to test this hypothesis, encompassing the full range of warming scenarios projected by the Intergovernmental Panel on Climate Change for the northern region. We took soils from these geothermal sites 7 years after the onset of warming and incubated them at varying temperatures and substrate availability conditions to detect persistent alterations of microbial physiology to long-term warming. Seven years of continuous warming ranging from 1.8 to 15.9 °C triggered a 8.6–58.0% decrease on the C concentrations in the topsoil (0–10 cm) of these sub-arctic silt-loam Andosols. The sensitivity of microbial respiration to temperature (Q10) was not altered. However, soil microbes showed a persistent increase in their microbial metabolic quotients (microbial respiration per unit of microbial biomass) and a subsequent diminished C retention in biomass. After an initial depletion of labile soil C upon soil warming, increasing energy costs of metabolic maintenance and resource acquisition led to a weaker capacity of C stabilization in the microbial biomass of warmer soils. This mechanism contributes to our understanding of the acclimated response of soil respiration to in situ soil warming at the ecosystem level, despite a lack of acclimation at the physiological level. Persistent increases in the respiratory costs of soil microbes in response to warming constitute a fundamental process that should be incorporated into climate change-C cycling models. © 2018 Springer International Publishing AG, part of Springer Nature

Llegeix més

Seasonal and diurnal variations of plant isoprenoid emissions from two dominant species in Mediterranean shrubland and forest submitted to experimental drought

Mu Z., Llusià J., Liu D., Ogaya R., Asensio D., Zhang C., Peñuelas J. (2018) Seasonal and diurnal variations of plant isoprenoid emissions from two dominant species in Mediterranean shrubland and forest submitted to experimental drought. Atmospheric Environment. 191: 105-115.
Enllaç
Doi: 10.1016/j.atmosenv.2018.08.010

Resum:

We tested the effect of increasing drought conditions in the Mediterranean Basin on isoprenoid emissions for the coming decades by analyzing their effect experimentally on the dominant Mediterranean species Erica multiflora in a Garraf shrubland and Quercus ilex in a Prades forest in Catalonia (Spain). Drought was simulated in Garraf using automatically sliding curtains to decrease the amount of soil moisture by 5% and in Prades by partial rainfall exclusion and runoff exclusion for a 25% decrease. We measured photosynthetic rates (A), stomatal conductance (gs) and rates of isoprenoid emission in the morning and at midday for four seasons and determined the relationship of emission rates with environmental conditions. Terpenes were emitted by both species, but only E. multiflora emitted isoprene. α-Pinene and limonene were the most abundant terpenes. Isoprenoid emissions increased with air temperature and generally decreased as the amount of soil moisture increased. The results of this study suggest that higher isoprenoid emissions can be expected in the warmer and drier conditions predicted for the coming decades in the Mediterranean region. © 2018

Llegeix més

Shifts in plant and soil C, N and P accumulation and C:N:P stoichiometry associated with flooding intensity in subtropical estuarine wetlands in China

Wang W., Sardans J., Wang C., Zeng C., Tong C., Bartrons M., Asensio D., Peñuelas J. (2018) Shifts in plant and soil C, N and P accumulation and C:N:P stoichiometry associated with flooding intensity in subtropical estuarine wetlands in China. Estuarine, Coastal and Shelf Science. 215: 172-184.
Enllaç
Doi: 10.1016/j.ecss.2018.09.026

Resum:

Flooding caused by rising sea levels can influence the biogeochemistry of estuarine wetland ecosystems. We studied the relationships of higher flooding intensity with soil carbon (C), nitrogen (N) and phosphorus (P) concentrations in communities of the native sedge Cyperus malaccensis var. brevifolius Boecklr. in the wetlands of the Minjiang River estuary in China. The aboveground and total biomasses of C. malaccensis were higher in high-flooding habitats than in intermediate- and low-flooding habitats. These differences in plant biomass were accompanied by a lower N:P ratio in the aboveground biomass and a higher N:P ratio in the belowground biomass. Higher intensities of flooding were associated with higher soil N and P concentrations in intermediate and deep soil layers. The higher P concentration under flooding was mainly associated with the higher clay content, whereas the higher N concentration was associated with higher salinity. Flooding intensity did not have a net total effect on soil total C concentration. The positive direct effect of flooding intensity on total soil C concentration was counteracted by its positive effects on CH4 emissions and soil salinity. The results suggest that C. malaccensis wetlands will be able to maintain and even increase the current C, N and P storage capacity of the ecosystem under moderate increases of flooding in the Minjiang River estuary. © 2018

Llegeix més

Storage and release of nutrients during litter decomposition for native and invasive species under different flooding intensities in a Chinese wetland

Wang W., Wang C., Sardans J., Tong C., Ouyang L., Asensio D., Gargallo-Garriga A., Peñuelas J. (2018) Storage and release of nutrients during litter decomposition for native and invasive species under different flooding intensities in a Chinese wetland. Aquatic Botany. 149: 5-16.
Enllaç
Doi: 10.1016/j.aquabot.2018.04.006

Resum:

Projections of climate change impacts over the coming decades suggest that rising sea level will flood coastal wetlands. We studied the impacts of three intensities of flooding on litter decomposition in the native Cyperus malaccensis, and the invasives Spartina alterniflora and Phragmites australis in Shanyutan wetland (Minjiang River estuary, China). Invasive species had larger C, N and P stocks in plant-litter compartments and higher fluxes among plant-litter-soil, which increased with flooding intensity. Litter mass remaining (% of initial mass) were correlated with the N:P ratio in remaining litter, consistently with the N-limitation in this wetland. P. australis had the highest accumulated N release (P < 0.001) in all flooding intensities, whereas C. malaccensis had higher N accumulated release than S. alternifolia but only at low flooding intensity. At high flooding intensity, the N released in the first year of litter decomposition (g m−2 y−1) were 9.56 ± 0.21, 2.38 ± 0.18 and 1.92 ± 0.03 for P. australis, S. alternifolia and C. malaccensis, respectively. The higher rates of nutrient release from litter decomposition in invasive species provided better nutrient supply during the growing season coinciding with the initial phases of decomposition. Thus, this study shows that invasive species may gain a competitive advantage over the native C. malaccensis under the projected scenarios of sea level rises. © 2018 Elsevier B.V.

Llegeix més

Global patterns of phosphatase activity in natural soils

Margalef O., Sardans J., Fernández-Martínez M., Molowny-Horas R., Janssens I.A., Ciais P., Goll D., Richter A., Obersteiner M., Asensio D., Peñuelas J. (2017) Global patterns of phosphatase activity in natural soils. Scientific Reports. 7: 0-0.
Enllaç
Doi: 10.1038/s41598-017-01418-8

Resum:

Soil phosphatase levels strongly control the biotic pathways of phosphorus (P), an essential element for life, which is often limiting in terrestrial ecosystems. We investigated the influence of climatic and soil traits on phosphatase activity in terrestrial systems using metadata analysis from published studies. This is the first analysis of global measurements of phosphatase in natural soils. Our results suggest that organic P (Porg), rather than available P, is the most important P fraction in predicting phosphatase activity. Structural equation modeling using soil total nitrogen (TN), mean annual precipitation, mean annual temperature, thermal amplitude and total soil carbon as most available predictor variables explained up to 50% of the spatial variance in phosphatase activity. In this analysis, Porg could not be tested and among the rest of available variables, TN was the most important factor explaining the observed spatial gradients in phosphatase activity. On the other hand, phosphatase activity was also found to be associated with climatic conditions and soil type across different biomes worldwide. The close association among different predictors like Porg, TN and precipitation suggest that P recycling is driven by a broad scale pattern of ecosystem productivity capacity. © 2017 The Author(s).

Llegeix més

Organic cultivation of jasmine and tea increases carbon sequestration by changing plant and soil stoichiometry

Wang W., Min Q., Sardans J., Wang C., Asensio D., Bartrons M., Peñuelas J. (2016) Organic cultivation of jasmine and tea increases carbon sequestration by changing plant and soil stoichiometry. Agronomy Journal. 108: 1636-1648.
Enllaç
Doi: 10.2134/agronj2015.0559

Resum:

Organic cultivation methods would be a good alternative to conventional cultivation, avoiding the use of industrial fertilizer and reducing the risk of eutrophication, but its impacts on soil elemental composition and stoichiometry warrants to be clearly stated. This study was conducted to determine the effects of long-term organic cultivation on soil elemental composition, stoichiometry, and C storing capacity and CO2 emissions in the plant-soil systems of jasmine (Jasminum spp.) and tea [Camellia sinensis (L.) Ktze.] plantations in Fujian and other regions in China. We examined the impact of organic cultivation on the concentrations, contents and stoichiometric relationships among C, N, P, and K. Organic cultivation was associated with lower plant N and P concentrations, and P mineralomasses and with higher total plant C/N, C/P, C/K, and N/P ratios and higher soil N and P concentrations and contents at some depths. Organic cultivation was thus associated with a shift of P from plants to soil and with a higher nutrient-use efficiency in biomass production, mainly of P. Soil CO2 emissions were higher under organic cultivation, but the soil was able to accumulate more C with no changes in C storage in plant biomass, suggesting that organic cultivation could increase the overall C sequestration, thereby mitigating climate change and enhancing soil nutrient content. Our results thus showed that the organic cultivation of jasmine and tea in Fujian can improve soil fertility and C accumulation, reduce the use of industrial fertilizers and phytosanitary products, and improve product quality without loss of economical profits. © 2016 by the American Society of Agronomy.

Llegeix més

Ecological stoichiometry of C, N, and P of invasive Phragmites australis and native Cyperus malaccensis species in the Minjiang River tidal estuarine wetlands of China

Wang W.Q., Sardans J., Wang C., Zeng C.S., Tong C., Asensio D., Penuelas J. (2015) Ecological stoichiometry of C, N, and P of invasive Phragmites australis and native Cyperus malaccensis species in the Minjiang River tidal estuarine wetlands of China. Plant Ecology. : 0-0.
Enllaç
Doi: 10.1007/s11258-015-0469-5

Resum:

Tidal estuarine wetlands of China are rich in plant diversity, but several global change drivers, such as species invasion, are currently affecting the biogeochemical cycles of these ecosystems. We seasonally analyzed the carbon (C), nitrogen (N), and phosphorus (P) concentrations in litters and soils and in leaves, stems, and roots of the C3 invasive species Phragmites australis (Cav.) Trin. ex Steud. and of the C4 native species Cyperus malaccensis var. brevifolius Boeckeler to investigate the effect of C3 plant invasion on C, N, and P stoichiometry in the C4 plant-dominated tidal wetlands of the Minjiang River. When averaged across seasons, the invasive species P. australis had higher N concentrations and lower P concentrations in leaves than the native species C. malaccensis. N and P concentrations were lower in litter (stem and leaf), whereas C concentrations in leaf litter were higher in P. australis than in C. malaccensis. The C, N, and P concentrations of the soil also did not differ, but plants had a lower C:N and much higher N:P ratios than soils. Root C:P and N:P ratios were lower in the growing season both in the invasive and the native species. The leaf C:N, C:P and N:P ratios peaked in summer. The invasive species had lower C:N ratio in leaves and roots, and higher N:P ratios in all biomass organs and litter than the native species, an effect related with the higher N-resorption capacity of the invasive species. Interspecific differences in C:N, C:P, and N:P ratios may likely reflect the differences in plant morphology, nutrient-use efficiency, and photosynthetic capacity between the C3 (P. australis) and C4 (C. malaccensis) plants. Our results generally suggested that the success of P. australis in these wetlands was related to its slow growth and higher resorption capacity of N and P. This implies a more conservative use of limited nutrients, particularly N, by P. australis, and to higher N concentration in its biomass thus potentially contributing to its invasiveness in these estuarine wetlands. © 2015 Springer Science+Business Media Dordrecht

Llegeix més

Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances

Carnicer J., Sardans J., Stefanescu C., Ubach A., Bartons M., Asensio D., Penuelas J. (2014) Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances. Journal of Plant Physiology. : 0-0.
Enllaç
Doi: 10.1016/j.jplph.2014.07.022

Resum:

Global change analyses usually consider biodiversity as a global asset that needs to be preserved. Biodiversity is frequently analysed mainly as a response variable affected by diverse environmental drivers. However, recent studies highlight that gradients of biodiversity are associated with gradual changes in the distribution of key dominant functional groups characterized by distinctive traits and stoichiometry, which in turn often define the rates of ecosystem processes and nutrient cycling. Moreover, pervasive links have been reported between biodiversity, food web structure, ecosystem function and species stoichiometry. Here we review current global stoichiometric gradients and how future distributional shifts in key functional groups may in turn influence basic ecosystem functions (production, nutrient cycling, decomposition) and therefore could exert a feedback effect on stoichiometric gradients. The C-N-P stoichiometry of most primary producers (phytoplankton, algae, plants) has been linked to functional trait continua (i.e. to major axes of phenotypic variation observed in inter-specific analyses of multiple traits). In contrast, the C-N-P stoichiometry of higher-level consumers remains less precisely quantified in many taxonomic groups. We show that significant links are observed between trait continua across trophic levels. In spite of recent advances, the future reciprocal feedbacks between key functional groups, biodiversity and ecosystem functions remain largely uncertain. The reported evidence, however, highlights the key role of stoichiometric traits and suggests the need of a progressive shift towards an ecosystemic and stoichiometric perspective in global biodiversity analyses.

Llegeix més

Foliar CO2 in a holm oak forest subjected to 15 years of climate change simulation

Ogaya R., Llusia J., Barbeta A., Asensio D., Liu D., Alessio G.A., Penuelas J. (2014) Foliar CO2 in a holm oak forest subjected to 15 years of climate change simulation. Plant Science. 226: 101-107.
Enllaç
Doi: 10.1016/j.plantsci.2014.06.010

Resum:

A long-term experimental drought to simulate future expected climatic conditions for Mediterranean forests, a 15% decrease in soil moisture for the following decades, was conducted in a holm oak forest since 1999. Net photosynthetic rate, stomatal conductance and leaf water potential were measured from 1999 to 2013 in Quercus ilex and Phillyrea latifolia, two co-dominant species of this forest. These measurements were performed in four plots, two of them received the drought treatment and the two other plots were control plots. The three studied variables decreased with increases in VPD and decreases in soil moisture in both species, but the decrease of leaf water potential during summer drought was larger in P. latifolia, whereas Q. ilex reached higher net photosynthetic rates and stomatal conductance values during rainy periods than P. latifolia. The drought treatment decreased ca. 8% the net photosynthetic rates during the overall studied period in both Q. ilex and P. latifolia, whereas there were just non-significant trends toward a decrease in leaf water potential and stomatal conductance induced by drought treatment. Future drier climate may lead to a decrease in the carbon balance of Mediterranean species, and some shrub species well resistant to drought could gain competitive advantage relative to Q. ilex, currently the dominant species of this forest. © 2014 Elsevier Ireland Ltd.

Llegeix més

Biogenic volatile emissions from the soil

Penuelas J., Asensio D., Tholl D., Wenke K., Rosenkranz M., Piechulla B., Schnitzler J.P. (2014) Biogenic volatile emissions from the soil. Plant, Cell and Environment. 37: 1866-1891.
Enllaç
Doi: 10.1111/pce.12340

Resum:

Volatile compounds are usually associated with an appearance/presence in the atmosphere. Recent advances, however, indicated that the soil is a huge reservoir and source of biogenic volatile organic compounds (bVOCs), which are formed from decomposing litter and dead organic material or are synthesized by underground living organism or organs and tissues of plants. This review summarizes the scarce available data on the exchange of VOCs between soil and atmosphere and the features of the soil and particle structure allowing diffusion of volatiles in the soil, which is the prerequisite for biological VOC-based interactions. In fact, soil may function either as a sink or as a source of bVOCs. Soil VOC emissions to the atmosphere are often 1-2 (0-3) orders of magnitude lower than those from aboveground vegetation. Microorganisms and the plant root system are the major sources for bVOCs. The current methodology to detect belowground volatiles is described as well as the metabolic capabilities resulting in the wealth of microbial and root VOC emissions. Furthermore, VOC profiles are discussed as non-destructive fingerprints for the detection of organisms. In the last chapter, belowground volatile-based bi- and multi-trophic interactions between microorganisms, plants and invertebrates in the soil are discussed. © 2014 John Wiley & Sons Ltd.

Llegeix més

Pàgines