The Moran effect and environmental vetoes: Phenological synchrony and drought drive seed production in a Mediterranean oak

Bogdziewicz, M., Fernández-Martínez, M., Bonal, R., Belmonte, J., Espelta, J.M. (2017) The Moran effect and environmental vetoes: Phenological synchrony and drought drive seed production in a Mediterranean oak. Proceedings of the Royal Society B: Biological Sciences. 284: 0-0.
Enllaç
Doi: 10.1098/rspb.2017.1784

Resum:

Beyond predator satiation: Masting but also the effects of rainfall stochasticity on weevils drive acorn predation

Espelta, J.M., Arias-Leclaire, H., Fernandez-Martinez, M., Doblas-Miranda, E., Muñoz, A., Bonal, R. (2017) Beyond predator satiation: Masting but also the effects of rainfall stochasticity on weevils drive acorn predation. Ecosphere. 8: 0-0.
Enllaç
Doi: 10.1002/ecs2.1836

Resum:

Atmospheric deposition, CO2, and change in the land carbon sink

Fernández-Martínez M., Vicca S., Janssens I.A., Ciais P., Obersteiner M., Bartrons M., Sardans J., Verger A., Canadell J.G., Chevallier F., Wang X., Bernhofer C., Curtis P.S., Gianelle D., Grünwald T., Heinesch B., Ibrom A., Knohl A., Laurila T., Law B.E., Limousin J.M., Longdoz B., Loustau D., Mammarella I., Matteucci G., Monson R.K., Montagnani L., Moors E.J., Munger J.W., Papale D., Piao S.L., Peñuelas J. (2017) Atmospheric deposition, CO2, and change in the land carbon sink. Scientific Reports. 7: 0-0.
Enllaç
Doi: 10.1038/s41598-017-08755-8

Resum:

Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using time series of flux observations from 23 forests distributed throughout Europe and the USA, and generalised mixed models, we found that forest-level net ecosystem production and gross primary production have increased by 1% annually from 1995 to 2011. Statistical models indicated that increasing atmospheric CO2 was the most important factor driving the increasing strength of carbon sinks in these forests. We also found that the reduction of sulphur deposition in Europe and the USA lead to higher recovery in ecosystem respiration than in gross primary production, thus limiting the increase of carbon sequestration. By contrast, trends in climate and nitrogen deposition did not significantly contribute to changing carbon fluxes during the studied period. Our findings support the hypothesis of a general CO2-fertilization effect on vegetation growth and suggest that, so far unknown, sulphur deposition plays a significant role in the carbon balance of forests in industrialized regions. Our results show the need to include the effects of changing atmospheric composition, beyond CO2, to assess future dynamics of carbon-climate feedbacks not currently considered in earth system/climate modelling. © 2017 The Author(s).

Llegeix més

Nature beyond linearity: Meteorological variability and Jensen's Inequality can explain mast seeding behavior

Fernández-Martínez, M., Bogdziewicz, M., Espelta, J.M., Peñuelas, J. (2017) Nature beyond linearity: Meteorological variability and Jensen's Inequality can explain mast seeding behavior. Frontiers in Ecology and Evolution. 5: 0-0.
Enllaç
Doi: 10.3389/fevo.2017.00134

Resum:

Long-term fertilization determines different metabolomic profiles and responses in saplings of three rainforest tree species with different adult canopy position

Gargallo-Garriga A., Wright S.J., Sardans J., Pérez-Trujillo M., Oravec M., Večeřová K., Urban O., Fernández-Martónez M., Parella T., Penuelas J. (2017) Long-term fertilization determines different metabolomic profiles and responses in saplings of three rainforest tree species with different adult canopy position. PLoS ONE. 12: 0-0.
Enllaç
Doi: 10.1371/journal.pone.0177030

Resum:

Background Tropical rainforests are frequently limited by soil nutrient availability. However, the response of the metabolic phenotypic plasticity of trees to an increase of soil nutrient availabilities is poorly understood. We expected that increases in the ability of a nutrient that limits some plant processes should be detected by corresponding changes in plant metabolome profile related to such processes. Methodology/Principal findings We studied the foliar metabolome of saplings of three abundant tree species in a 15 year field NPK fertilization experiment in a Panamanian rainforest. The largest differences were among species and explained 75% of overall metabolome variation. The saplings of the large canopy species, Tetragastris panamensis, had the lowest concentrations of all identified amino acids and the highest concentrations of most identified secondary compounds. The saplings of the amid canopyo species, Alseis blackiana, had the highest concentrations of amino acids coming from the biosynthesis pathways of glycerate-3P, oxaloacetate and - ketoglutarate, and the saplings of the low canopy species, Heisteria concinna, had the highest concentrations of amino acids coming from the pyruvate synthesis pathways. Conclusions/Significance The changes in metabolome provided strong evidence that different nutrients limit different species in different ways. With increasing P availability, the two canopy species shifted their metabolome towards larger investment in protection mechanisms, whereas with increasing N availability, the sub-canopy species increased its primary metabolism. The results highlighted the proportional distinct use of different nutrients by different species and the resulting different metabolome profiles in this high diversity community are consistent with the ecological niche theory. © 2017 Gargallo-Garriga et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Llegeix més

Global patterns of phosphatase activity in natural soils

Margalef O., Sardans J., Fernández-Martínez M., Molowny-Horas R., Janssens I.A., Ciais P., Goll D., Richter A., Obersteiner M., Asensio D., Peñuelas J. (2017) Global patterns of phosphatase activity in natural soils. Scientific Reports. 7: 0-0.
Enllaç
Doi: 10.1038/s41598-017-01418-8

Resum:

Soil phosphatase levels strongly control the biotic pathways of phosphorus (P), an essential element for life, which is often limiting in terrestrial ecosystems. We investigated the influence of climatic and soil traits on phosphatase activity in terrestrial systems using metadata analysis from published studies. This is the first analysis of global measurements of phosphatase in natural soils. Our results suggest that organic P (Porg), rather than available P, is the most important P fraction in predicting phosphatase activity. Structural equation modeling using soil total nitrogen (TN), mean annual precipitation, mean annual temperature, thermal amplitude and total soil carbon as most available predictor variables explained up to 50% of the spatial variance in phosphatase activity. In this analysis, Porg could not be tested and among the rest of available variables, TN was the most important factor explaining the observed spatial gradients in phosphatase activity. On the other hand, phosphatase activity was also found to be associated with climatic conditions and soil type across different biomes worldwide. The close association among different predictors like Porg, TN and precipitation suggest that P recycling is driven by a broad scale pattern of ecosystem productivity capacity. © 2017 The Author(s).

Llegeix més

Shifting from a fertilization-dominated to a warming-dominated period

Peñuelas, J., Ciais, P., Canadell, J.G., Janssens, I.A., Fernández-Martínez, M., Carnicer, J., Obersteiner, M., Piao, S., Vautard, R., Sardans, J. (2017) Shifting from a fertilization-dominated to a warming-dominated period. Nature Ecology and Evolution. 1: 1438-1445.
Enllaç
Doi: 10.1038/s41559-017-0274-8

Resum:

Impacts of global change on Mediterranean forests and their services

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Barbeta, A., Achotegui-Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol, G., Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I., Camino-Serrano, M., Vives-Ingla, M., Stocker, B.D., Balzarolo, M., Guerrieri, R., Peaucelle, M., Marañón-Jiménez, S., Bórnez-Mejías, K., Mu, Z., Descals, A., Castellanos, A., Terradas, J. (2017) Impacts of global change on Mediterranean forests and their services. Forests. 8: 0-0.
Enllaç
Doi: 10.3390/f8120463

Resum: