Dampening effects of long-term experimental drought on growth and mortality rates of a Holm oak forest

Barbeta A., Ogaya R., Penuelas J. (2013) Dampening effects of long-term experimental drought on growth and mortality rates of a Holm oak forest. Global Change Biology. 19: 3133-3144.
Enllaç
Doi: 10.1111/gcb.12269

Resum:

Forests respond to increasing intensities and frequencies of drought by reducing growth and with higher tree mortality rates. Little is known, however, about the long-term consequences of generally drier conditions and more frequent extreme droughts. A Holm oak forest was exposed to experimental rainfall manipulation for 13 years to study the effect of increasing drought on growth and mortality of the dominant species Quercus ilex, Phillyrea latifolia, and Arbutus unedo. The drought treatment reduced stem growth of A. unedo (-66.5%) and Q. ilex (-17.5%), whereas P. latifolia remained unaffected. Higher stem mortality rates were noticeable in Q. ilex (+42.3%), but not in the other two species. Stem growth was a function of the drought index of early spring in the three species. Stem mortality rates depended on the drought index of winter and spring for Q. ilex and in spring and summer for P. latifolia, but showed no relation to climate in A. unedo. Following a long and intense drought (2005-2006), stem growth of Q. ilex and P. latifolia increased, whereas it decreased in A. unedo. Q. ilex also enhanced its survival after this period. Furthermore, the effect of drought treatment on stem growth in Q. ilex and A. unedo was attenuated as the study progressed. These results highlight the different vulnerabilities of Mediterranean species to more frequent and intense droughts, which may lead to partial species substitution and changes in forest structure and thus in carbon uptake. The response to drought, however, changed over time. Decreased intra- and interspecific competition after extreme events with high mortality, together with probable morphological and physiological acclimation to drought during the study period, may, at least in the short term, buffer forests against drier conditions. The long-term effects of drought consequently deserve more attention, because the ecosystemic responses are unlikely to be stable over time.Nontechnical summaryIn this study, we evaluate the effect of long-term (13 years) experimental drought on growth and mortality rates of three forest Mediterranean species, and their response to the different intensities and durations of natural drought. We provide evidence for species-specific responses to drought, what may eventually lead to a partial community shift favoring the more drought-resistant species. However, we also report a dampening of the treatment effect on the two drought-sensitive species, which may indicate a potential adaptation to drier conditions at the ecosystem or population level. These results are thus relevant to account for the stabilizing processes that would alter the initial response of ecosystem to drought through changes in plant physiology, morphology, and demography compensation. © 2013 John Wiley & Sons Ltd.

Llegeix més

Leaf and stand-level carbon uptake of a Mediterranean forest estimated using the satellite-derived reflectance indices EVI and PRI

Garbulsky M.F., Peñuelas J., Ogaya R., Filella I. (2013) Leaf and stand-level carbon uptake of a Mediterranean forest estimated using the satellite-derived reflectance indices EVI and PRI. International Journal of Remote Sensing. 34: 1282-1296.
Enllaç
Doi: 10.1080/01431161.2012.718457

Resum:

Various aspects of global environmental change affect plant photosynthesis, the primary carbon input in ecosystems. Thus, accurate methods of measuring plant photosynthesis are important. Remotely sensed spectral indices can monitor in detail the green biomass of ecosystems, which provides a measure of potential photosynthetic capacity. In evergreen vegetation types, however, such as Mediterranean forests, the amount of green biomass changes little during the growing season and, therefore, changes in green biomass are not responsible for changes in photosynthetic rates in those forests. This study examined the net photosynthetic rates and the diametric increment of stems in a Mediterranean forest dominated by Quercus ilex using three spectral indices (normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and photochemical reflectance index (PRI)) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. Average annual EVI accounted for 83% of the variability of the diametric increment of Q. ilex stems over a 10 year period. NDVI was marginally correlated with the diametric increment of stems. This study was the first to identify a significant correlation between net photosynthetic rates and radiation use efficiency at the leaf level using PRI derived from satellite data analysed at the ecosystem level. These results suggest that each spectral index provided different and complementary information about ecosystem carbon uptake in a Mediterranean Q. ilex forest. © 2013 Copyright Taylor and Francis Group, LLC.

Llegeix més

Intensive measurements of gas, water, and energy exchange between vegetation and troposphere during the MONTES campaign in a vegetation gradient from short semi-desertic shrublands to tall wet temperate forests in the NW Mediterranean Basin

Penuelas J., Guenther A., Rapparini F., Llusia J., Filella I., Seco R., Estiarte M., Mejia-Chang M., Ogaya R., Ibanez J., Sardans J., Castano L.M., Turnipseed A., Duhl T., Harley P., Vila J., Estavillo J.M., Menendez S., Facini O., Baraldi R., Geron C., Mak J., Patton E.G., Jiang X., Greenberg J. (2013) Intensive measurements of gas, water, and energy exchange between vegetation and troposphere during the MONTES campaign in a vegetation gradient from short semi-desertic shrublands to tall wet temperate forests in the NW Mediterranean Basin. Atmospheric Environment. 75: 348-364.
Enllaç
Doi: 10.1016/j.atmosenv.2013.04.032

Resum:

MONTES ("Woodlands") was a multidisciplinary international field campaign aimed at measuring energy, water and especially gas exchange between vegetation and atmosphere in a gradient from short semi-desertic shrublands to tall wet temperate forests in NE Spain in the North Western Mediterranean Basin (WMB). The measurements were performed at a semidesertic area (Monegros), at a coastal Mediterranean shrubland area (Garraf), at a typical Mediterranean holm oak forest area (Prades) and at a wet temperate beech forest (Montseny) during spring (April 2010) under optimal plant physiological conditions in driest-warmest sites and during summer (July 2010) with drought and heat stresses in the driest-warmest sites and optimal conditions in the wettest-coolest site. The objective of this campaign was to study the differences in gas, water and energy exchange occurring at different vegetation coverages and biomasses. Particular attention was devoted to quantitatively understand the exchange of biogenic volatile organic compounds (BVOCs) because of their biological and environmental effects in the WMB. A wide range of instruments (GC-MS, PTR-MS, meteorological sensors, O3 monitors,. .) and vertical platforms such as masts, tethered balloons and aircraft were used to characterize the gas, water and energy exchange at increasing footprint areas by measuring vertical profiles. In this paper we provide an overview of the MONTES campaign: the objectives, the characterization of the biomass and gas, water and energy exchange in the 4 sites-areas using satellite data, the estimation of isoprene and monoterpene emissions using MEGAN model, the measurements performed and the first results. The isoprene and monoterpene emission rates estimated with MEGAN and emission factors measured at the foliar level for the dominant species ranged from about 0 to 0.2mgm-2h-1 in April. The warmer temperature in July resulted in higher model estimates from about 0 to ca. 1.6mgm-2h-1 for isoprene and ca. 4.5mgm-2h-1 for monoterpenes, depending on the site vegetation and footprint area considered. There were clear daily and seasonal patterns with higher emission rates and mixing ratios at midday and summer relative to early morning and early spring. There was a significant trend in CO2 fixation (from 1 to 10mgCm-2d-1), transpiration (from1-5kgCm-2d-1), and sensible and latent heat from the warmest-driest to the coolest-wettest site. The results showed the strong land-cover-specific influence on emissions of BVOCs, gas, energy and water exchange, and therefore demonstrate the potential for feed-back to atmospheric chemistry and climate. •We present a multidisciplinary biosphere-atmosphere field campaign.•We measured a gradient from semi-desertic shrublands to wet temperate forests.•A wide range of instruments and vertical platforms were used.•Land cover strongly influenced emissions of BVOCs and gas, energy and water exchange.•Vegetation has strong potential for feed-back to atmospheric chemistry and climate. © 2013 Elsevier Ltd.

Llegeix més

Evidence of current impact of climate change on life: A walk from genes to the biosphere

Penuelas J., Sardans J., Estiarte M., Ogaya R., Carnicer J., Coll M., Barbeta A., Rivas-Ubach A., Llusia J., Garbulsky M., Filella I., Jump A.S. (2013) Evidence of current impact of climate change on life: A walk from genes to the biosphere. Global Change Biology. 19: 2303-2338.
Enllaç
Doi: 10.1111/gcb.12143

Resum:

We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade-offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life. © 2013 John Wiley & Sons Ltd.

Llegeix més

Dynamics of non-structural carbohydrates in three mediterranean woody species following long-term experimental drought

Rosas T., Galiano L., Ogaya R., Penuelas J., Martinez-Vilalta J. (2013) Dynamics of non-structural carbohydrates in three mediterranean woody species following long-term experimental drought. Frontiers in Plant Science. 4: 0-0.
Enllaç
Doi: 10.3389/fpls.2013.00400

Resum:

Stored non-structural carbohydrates (NSC) have been proposed as a key determinant of drought resistance in plants. However, the evidence for this role is controversial, as it comes mostly from observational, short-term studies. Here, we take advantage of a long-term experimental throughfall reduction to elucidate the response of NSC to increased drought 14 years after the beginning of the treatment in three Mediterranean resprouter trees (Quercus ilex L., Arbutus unedo L. and Phillyrea latifclia L.). In addition, we selected 20. Q. ilex individuals outside the experimental plots to directly assess the relationship between defoliation and NSC at the individual level. We measured the seasonal course of NSC concentrations in leaves, branches and lignotuber in late winter, late spring, summer, and autumn 2012. Total concentrations of NSC were highest in the lignotuber for all species. In the long-term drought experiment we found significant depletion in concentrations of total NSC in treatment plots only in the lignotuber of A. unedo. At the same time, A. unedo was the only species showing a significant reduction in BAI under the drought treatment during the 14 years of the experiment. By contrast, Q. ilex just reduced stem growth only during the first 4 years of treatment and P latifclia remained unaffected over the whole study period. However, we found a clear association between the concentrations of NSC and defoliation in Q. ilex individuals sampled outside the experimental plots, with lower total concentrations of NSC and lower proportion of starch in defoliated individuals. Taken together, our results suggest that stabilizing processes, probably at the stand level, may have been operating in the long-term to mitigate any impact of drought on NSC levels, and highlight the necessity to incorporate long-term experimental studies of plant responses to drought. © 2013 Rosas, Galiano, Ogaya, Peñuelas and Martínez-Vilalta.

Llegeix més

Field-simulated droughts affect elemental leaf stoichiometry in Mediterranean forests and shrublands

Sardans J., Rivas-Ubach A., Estiarte M., Ogaya R., Penuelas J. (2013) Field-simulated droughts affect elemental leaf stoichiometry in Mediterranean forests and shrublands. Acta Oecologica. 50: 20-31.
Enllaç
Doi: 10.1016/j.actao.2013.04.002

Resum:

This study evaluated the change induced by the year season and by experimentally induced drought on foliar element stoichiometry of the predominant woody species (. Quercus ilex and Erica multiflora) in two Mediterranean ecosystems, a forest and a shrubland. This study is based in two long-term (11yr) field experiments that simulated drought throughout the annual cycle.The effects of experimental droughts were significant but weaker than the changes produced by ontogeny and seasonality. Leaf N and P concentrations were higher in spring (the main growing season) in E. multiflora and, in Q.ilex in autumn (a period of additional growth). Leaf N:P ratios were lower in spring. In Q.ilex, the highest leaf K concentrations and leaf K:P ratios, and the lowest leaf C:K and N:K ratios, occurred in summer, the season when water stress was greatest. In E.multiflora, leaf K concentrations and K:P ratios were highest, and leaf C:K and N:K ratios were lowest in the plants from the drought-treated plots.The plant capacity to change K concentrations in response to seasonality and to drought is at least as great as the capacity to change N and P concentrations. The results underscore the importance of K and its stoichiometry relative to C, N and P in dry environments. These results indicate first, that N:P ratio shifts are not uniquely related to growth rate in Mediterranean plants but also to drought, and second, that there is a need to take into account K in ecological stoichiometry studies of terrestrial plants. © 2013 Elsevier Masson SAS.

Llegeix més