Contribution of ecosystem services to air quality and climate change mitigation policies: The case of urban forests in Barcelona, Spain

Baro F., Chaparro L., Gomez-Baggethun E., Langemeyer J., Nowak D.J., Terradas J. (2014) Contribution of ecosystem services to air quality and climate change mitigation policies: The case of urban forests in Barcelona, Spain. Ambio. 43: 466-479.
Enllaç
Doi: 10.1007/s13280-014-0507-x

Resum:

Mounting research highlights the contribution of ecosystem services provided by urban forests to quality of life in cities, yet these services are rarely explicitly considered in environmental policy targets. We quantify regulating services provided by urban forests and evaluate their contribution to comply with policy targets of air quality and climate change mitigation in the municipality of Barcelona, Spain. We apply the i-Tree Eco model to quantify in biophysical and monetary terms the ecosystem services "air purification," "global climate regulation,"and the ecosystem disservice "air pollution" associated with biogenic emissions. Our results show that the contribution of urban forests regulating services to abate pollution is substantial in absolute terms, yet modest when compared to overall city levels of air pollution and GHG emissions. We conclude that in order to be effective, green infrastructure-based efforts to offset urban pollution at the municipal level have to be coordinated with territorial policies at broader spatial scales. ©The Author(s) 2014.

Llegeix més

The foliar microbiome

Penuelas J., Terradas J. (2014) The foliar microbiome. Trends in Plant Science. 19: 278-280.
Enllaç
Doi: 10.1016/j.tplants.2013.12.007

Resum:

Proficient performance in plants is strongly associated with distinct microbial communities that live in and on their organs. We comment here on the current knowledge of the composition of the foliar microbiome, highlight its importance for plants, ecosystemic functioning, and crop yields, and propose tools and experiments to overcome the current knowledge gap© 2013 Elsevier Ltd.

Llegeix més

Removal of floral microbiota reduces floral terpene emissions

Peñuelas J., Farré-Armengol G., Llusia J., Gargallo-Garriga A., Rico L., Sardans J., Terradas J., Filella I. (2014) Removal of floral microbiota reduces floral terpene emissions. Scientific Reports. 4: 0-0.
Enllaç
Doi: 10.1038/srep06727

Resum:

The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination.

Llegeix més

Community structures of N2-fixing bacteria associated with the phyllosphere of a Holm oak forest and their response to drought

Rico L., Ogaya R., Terradas J., Penuelas J. (2014) Community structures of N2-fixing bacteria associated with the phyllosphere of a Holm oak forest and their response to drought. Plant Biology. 16: 586-593.
Enllaç
Doi: 10.1111/plb.12082

Resum:

Biological nitrogen (N) fixation is a key pathway in terrestrial ecosystems and is therefore critical for understanding the responses of ecosystems to global environmental changes. The free-living diazotrophic community is distributed along the canopy-to-soil profile, but the ecological significance of epiphyllic N2 fixers, despite their functional relevance, on plant foliar surfaces remains very poorly understood compared with the N2-fixing community in forest litter and soils. We assessed the community structure of N2 fixers and overall bacteria by genetic fingerprinting (t-RFLP) to explore the seasonal successional patterns of the microbial community in the natural phyllosphere of a Holm oak (Quercus ilex) forest submitted to 12-year field experiment of rain exclusion mimicking the conditions of drought projected for the coming decades. Leaves of Holm oak were analysed in different seasons over a period of 1.5 years. The bacterial community of the phyllosphere did not correspond to the surrounding soil biome in the same area. These analyses provided field evidence for the presence of free-living diazotrophs associated with the tissues of leaves of Holm oak, the dominant tree species of many Mediterranean forests. The results also revealed that the community composition is affected seasonally and inter-annually by the environment, and that the composition shifts in response to climate change. Drought treatment increased the richness of the epiphyllic microbial community, especially during the summer. These changes were associated with higher C:N ratios of leaves observed in response to drought in semiarid areas. This epiphyllic microbiota that can potentially fix N2 extends the capacity of plants to adapt to the environment. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

Llegeix més