Are soil-water functions affected by biochar application?

Ojeda G., Mattana S., Avila A., Alcaniz J.M., Volkmann M., Bachmann J. (2015) Are soil-water functions affected by biochar application?. Geoderma. 249-250: 1-11.
Enllaç
Doi: 10.1016/j.geoderma.2015.02.014

Resum:

Today biochar is considered a stable-carbon source that is able to improve soil quality. However, although biochar effects on some soil properties are already becoming well known, its impact on complex soil hydrological functions has yet to be better assessed. The main objectives are: (a) to determine the impact of different biochar amendments on important physical and chemical soil properties and (b) to determine whether the origin (biomass or sewage sludge) and pyrolysis technique can change biochar properties and regulate biochar influence on important soil functions, i.e. nutrient release, water sorption, and carbon storage. Six types of biochar produced from different biomass sources (pine, poplar or sludge) and pyrolysis processes (slow, fast or gasification) were applied to a sandy-loam, low-organic-matter, calcareous soil (mean dose: 18. g/kg) and incubated in a greenhouse without seeding. Two sampling campaigns, one month and one year after biochar amendments, were performed. The overall impact of biochar, analysed by principal response curves (PRCs), indicated that it could improve or deteriorate soil hydrological properties at different intensities. Soil wettability was modified due to sludge biochar addition to soil by increased water penetration dynamics during the capillary rise process of about 18%. In contrast, water storage as a soil function during soil drying was not affected. Because no differences on aggregate stability were observed between treatments, increments on soil organic carbon could not be related to biochar physical protection caused by aggregate formation or by enhanced aggregate stability. As a result, carbon storage, considered as a soil function provided by biochar, was mainly related to its chemical stability. On the other hand, nutrient flux during soil slaking was improved, increasing nutrient release from soil to water. In terms of biochar properties, an increment of surface wettability of biochar during water drop penetration was observed after one year of its addition to soil, where the mean values of contact angle (CA) decreased 69.5%. This important result suggest that initial biochar hydrophobicity (CA. >. 90°) disappeared after 1. year. It was observed that PRC analysis was able to identify important key soil properties that should be monitored when biochar is used as soil amendment. We conclude that the impact of biochar on soil functions depends mainly on biochar feedstock rather than on the pyrolysis technique used during its production. In general, the performance of biochar obtained from sludge and vegetal biomass was markedly different. © 2015 Elsevier B.V.

Llegeix més

Carbon sequestration in a limestone quarry mine soil amended with sewage sludge

Ojeda G., Ortiz O., Medina C.R., Perera I., Alcaniz J.M. (2015) Carbon sequestration in a limestone quarry mine soil amended with sewage sludge. Soil Use and Management. : 0-0.
Enllaç
Doi: 10.1111/sum.12179

Resum:

To reclaim a limestone quarry, 200 and 400 Mg/ha of municipal sewage sludge were mixed with an infertile calcareous substrate and spread as mine soil in 1992. Soil samples were taken 1 week later and again after 17 yr of mine soil rehabilitation so as to assess changes in the amount and persistence of soil organic carbon (SOC). Sludge application increased SOC as a function of the sludge rate at both sampling times. Seventeen years after the sludge amendments, the nonhydrolysable carbon was increased in the 400 Mg/ha of sludge treatment. The recalcitrance of SOC was less in sludge-amended soils than in the control treatment at the initial sampling, but 17 yr later this trend had reversed, showing qualitative changes in soil organic carbon. The CO2-C production had not differed between treatments, yet the percentage of mineralized SOC was less in the high sludge dose. When the size of active (Cactive) and slow (Cslow) potentially mineralizable C pools was calculated by curve fitting of a double-exponential equation, the proportion of Cactive was observed to be smaller in the 400 Mg/ha sludge treatment. Soil aggregate stability, represented by the mean weight diameter of water-stable soil aggregates, was significantly greater in mine soil treated with the high dose of sludge (18.5%) and SOC tended to be concentrated in macro-aggregates (5-2 mm). Results suggest that SOC content in sludge-amended plots was preserved due by (i) replacement of the labile organic carbon of sludge by more stable compounds and (ii) protection of SOC in aggregates. © 2015 British Society of Soil Science.

Llegeix més

Can organic amendments be useful in transforming a mediterranean shrubland into a dehesa?

Tarrason D., Ojeda G., Ortiz O., Alcaniz J.M. (2014) Can organic amendments be useful in transforming a mediterranean shrubland into a dehesa?. Restoration Ecology. 22: 486-494.
Enllaç
Doi: 10.1111/rec.12092

Resum:

Transforming a shrubland into a dehesa system may be useful for recovering certain productive and regulatory functions of ecosystems such as grazing potential, soil erosion control, and also for reducing the risk of wildfire. However, the productivity of the herbaceous cover and tree development in the transformed system may be limited by soil fertility, especially after wildfire events. Previous studies have shown that adequate doses of sewage sludge may improve soil fertility and facilitate plant recovery, but few studies have focused on plant biodiversity assessment. Here, we compare the effects of sewage sludge that has undergone different post-treatments (dewatering, composting, or thermal drying) as a soil amendment used to transform a fire-affected shrubland into a dehesa, on tree growth and pasture composition (vegetation cover, species richness, and diversity). In the short term, sewage sludge causes changes in both pasture cover and tree growth. Although no major differences in vegetation species richness and composition have been detected, fertilization using sewage sludge was shown to modify the functional diversity of the vegetation community. Rapid replacement of shrubs by herbaceous cover and ruderal plants (e.g. Bromus hordeaceus and Leontodon taraxacoides) and of the three grass species sown (Festuca arundinacea, Lolium perenne, and Dactylis glomerata) was observed, whereas N-fixing species (leguminous) tended to be more abundant in nonfertilized soils and soils amended with composted sludge. These results indicate that sewage sludge modifies the functionality of vegetation when applied to soils, and that the response varies according to the treatment that the sludge has undergone. © 2014 Society for Ecological Restoration.

Llegeix més

Effects of nonylphenols on soil microbial activity and water retention

Ojeda G., Patrício J., Navajas H., Comellas L., Alcañiz J.M., Ortiz O., Marks E., Natal-da-Luz T., Sousa J.P. (2013) Effects of nonylphenols on soil microbial activity and water retention. Applied Soil Ecology. 64: 77-83.
Enllaç
Doi: 10.1016/j.apsoil.2012.10.012

Resum:

The main aim of this study is to analyze the influence of 4-nonylphenol (NP) on soil water retention and biological activity. Two doses of 4-nonylphenol (25 and 50mgkg-1) were tested in a loam soil with and without peat amendment. In general, one week after the start of the experiment, the soil water content retained at -0.75MPa of soil suction was 18% higher in the soil amended and its basal respiration (BR) was 15% higher than soil without peat. In contrast, the microbial activity indices (CM: coefficient of mineralization or BR:total organic carbon (TOC) ratio; Cmic:Corg: microbial biomass carbon (MBC):TOC ratio; qCO2: metabolic quotient or BR:MBC ratio) were higher in the soil without peat, compared to the soil amended with peat. On the other hand, the addition of NP to soil was able to modify soil biological but not physical (water retention, desorption) properties. When soil was amended with peat, MBC was reduced one week after applying NP. In contrast, no effects of NP on MBC were observed in the soil without peat. BR was reduced by 16% one week after applying 50mgkg-1 of NP to soil with peat, and was increased by 46% one week after applying 25mgkg-1 of NP to soil without peat. The effects of NP on MBC and BR could be associated more with the adsorption of NP by soil organic matter, while changes in CM or Cmic:Corg ratio were more closely related to changes in soil water retention. The potential toxic effects of NP (high qCO2 values) were only observed in the absence of peat amendments. Peat addition reduced NP toxic effects on microorganisms. © 2012 Elsevier B.V.

Llegeix més

Soil biochar amendments: type and dose effects

Ojeda G, Domene X, Mattana S, Sousa JP, Ortiz O, Andrés P, Alcañiz JM (2012) Soil biochar amendments: type and dose effects (Póster). EGU General Assembly. Viena, Austria, 22 -27 April 2012.

Improving substrate fertility to enhance growth and reproductive ability of a Pinus halepensis Mill. afforestation in a restored limestone quarry

Ortiz O., Ojeda G., Espelta J.M., Alcañiz J.M. (2012) Improving substrate fertility to enhance growth and reproductive ability of a Pinus halepensis Mill. afforestation in a restored limestone quarry. New Forests. 43: 365-381.
Enllaç
Doi: 10.1007/s11056-011-9286-4

Resum:

We have evaluated the effects of improving substrate fertility on the growth and reproduction of a P. halepensis plantation in a restored limestone quarry on a stony calcareous regolith (R plots). The natural substrate was supplemented by adding a 0.2 m layer of a fine textured soil (RS plots) or a sewage sludge amended soil (RSS plots). The treatments were performed when the pines were 7 years old, and tree growth (height and trunk and canopy diameter) was monitored over the subsequent 12 years. The reproductive status of the trees was also measured when the pines were 20 years old. Tree growth was proportional to the amount of soil nutrients: 12 years after treatment the mean height of the R, RS and RSS trees was 1.5, 3.1 and 6.2 m respectively and growth increases over the baseline were 76, 264 and 632%. The treatment also affected the age of onset of reproduction (15, 11 and 9 years, respectively), the average number of cones per tree (12, 43 and 61), and the amount of seeds per cone (37, 52 and 72), but did not modify the germination percentage of pine seeds (ca 71.5%). Soil organic carbon increased proportionally to the vegetation development, contributing to carbon sequestration. These results suggest that improving the nutritional status of the soil not only improves the growth of trees, but it also ameliorates their reproductive ability (earlier reproduction onset and larger seed crop size). Implications for soil restoration through afforestation are also discussed. © 2011 Springer Science+Business Media B.V.

Llegeix més

Effects of Different Types of Sludge on Soil Microbial Properties: A Field Experiment on Degraded Mediterranean Soils.

Tarrasón D, Ojeda G, Ortiz O, Alcañiz JM (2010) Effects of Different Types of Sludge on Soil Microbial Properties: A Field Experiment on Degraded Mediterranean Soils. Pedosphere 20: 681-691.

Soil water retention under dryin.g process in a soil amended with composted and thermally dried sewage sludges (Poster 0202), pp. 79-82 Published in DVD. Symposium 2.1.2, The physics of soil pore structure dynamics. 19th World Congress of Soil Science.

Ojeda G, Alcañiz JM (2010) Soil water retention under dryin.g process in a soil amended with composted and thermally dried sewage sludges (Poster 0202), pp. 79-82 Published in DVD. Symposium 2.1.2, The physics of soil pore structure dynamics. 19th World Congress of Soil Science. Soil Solutions for a Changing World, Brisbane, Australia 1 – 6 August 2010 (http://www.iuss.org/19th%20WCSS/.%5Csymposium/pdf/2208.pdf).

Wetting process and soil water retention of a minesoil amended with composted and thermally dried sludges

Ojeda G., Mattana S., Alcañiz J.M., Marando G., Bonmatí M., Woche S.K., Bachmann J. (2010) Wetting process and soil water retention of a minesoil amended with composted and thermally dried sludges. Geoderma. 156: 399-409.
Enllaç
Doi: 10.1016/j.geoderma.2010.03.011

Resum:

Composting or thermally-drying sludges are becoming commonly used in soil rehabilitation of degraded land. Sludge amendments increase soil organic matter, but can reduce soil wettability due to hydrophobic compounds. The main objective of this study is to analyse how composted and thermally dried sludges influence soil wettability and water retention properties of a minesoil obtained from limestone extraction during quarrying rehabilitation activities. Three composted (Blanes, Manresa and Vilaseca) and three thermally dried (Besós, Mataró and Sabadell) municipal sludges from different wastewater plants of medium-sized towns located in Catalonia (NE Spain) were mixed with a minesoil and filled into lysimeters The minesoil water retention curves and, the time required for their measurement were analyzed together with various soil key parameters. Throughout the wetting process, three characteristic points of the water retention curve were identified: (i) the air soil dryness point corresponding to a soil suction of - 25 MPa, (ii) the critical point where high suction regime changes to low suction regime, located around - 6 MPa and (iii) the wilting point, corresponding to a soil suction of - 1.5 MPa. One month after sludge amendments (S1), two composted sludges increased the vapour wetting time corresponding to wilting point (twp) of minesoil, while 1 year after sludge amendments (S2) two thermally dried sludges decreased twp. On the other hand, all composted sludges and one thermally dried sludge increased minesoil water retention corresponding to wilting point (wwp) at sampling one (S1), while at sampling two (S2) similar effects were observed except in one composted sludge treatment. Regarding to soil biophysical properties, the addition of composted and thermally dried sludges to minesoil increased total organic carbon, soil-water contact angle, microbial biomass, pH and electrical conductivity at both experimental time scales (S1 and S2), while extractable carbohydrates was only modified at S1. The sludge effects on soil wetting properties and biophysical parameters were dependent on sewage sludge origin and the type of post-treatment. Increases in total organic carbon, extractable carbohydrates, contact angle, microbial biomass or electrical conductivity and decreases in pH corresponded with increases in twp and wwp. It was observed that under similar conditions of water vapour adsorption, minesoil amended with composted sludge could have more difficulties to overcome the permanent wilting point under wetting process. © 2010 Elsevier B.V. All rights reserved.

Llegeix més

Time dependence of soil water hysteresis in a minesoil reclaimed by sewage sludge amendments.

Ojeda G, Marando G, Bonmatí M, Alcañiz JM (2009) Time dependence of soil water hysteresis in a minesoil reclaimed by sewage sludge amendments. Poromechanics IV, DEStech Publications, Inc., PA. ISBN 978-1-60595-006-8. pp 537-542.

Pàgines