Are soil-water functions affected by biochar application?

Ojeda G., Mattana S., Avila A., Alcaniz J.M., Volkmann M., Bachmann J. (2015) Are soil-water functions affected by biochar application?. Geoderma. 249-250: 1-11.
Enllaç
Doi: 10.1016/j.geoderma.2015.02.014

Resum:

Today biochar is considered a stable-carbon source that is able to improve soil quality. However, although biochar effects on some soil properties are already becoming well known, its impact on complex soil hydrological functions has yet to be better assessed. The main objectives are: (a) to determine the impact of different biochar amendments on important physical and chemical soil properties and (b) to determine whether the origin (biomass or sewage sludge) and pyrolysis technique can change biochar properties and regulate biochar influence on important soil functions, i.e. nutrient release, water sorption, and carbon storage. Six types of biochar produced from different biomass sources (pine, poplar or sludge) and pyrolysis processes (slow, fast or gasification) were applied to a sandy-loam, low-organic-matter, calcareous soil (mean dose: 18. g/kg) and incubated in a greenhouse without seeding. Two sampling campaigns, one month and one year after biochar amendments, were performed. The overall impact of biochar, analysed by principal response curves (PRCs), indicated that it could improve or deteriorate soil hydrological properties at different intensities. Soil wettability was modified due to sludge biochar addition to soil by increased water penetration dynamics during the capillary rise process of about 18%. In contrast, water storage as a soil function during soil drying was not affected. Because no differences on aggregate stability were observed between treatments, increments on soil organic carbon could not be related to biochar physical protection caused by aggregate formation or by enhanced aggregate stability. As a result, carbon storage, considered as a soil function provided by biochar, was mainly related to its chemical stability. On the other hand, nutrient flux during soil slaking was improved, increasing nutrient release from soil to water. In terms of biochar properties, an increment of surface wettability of biochar during water drop penetration was observed after one year of its addition to soil, where the mean values of contact angle (CA) decreased 69.5%. This important result suggest that initial biochar hydrophobicity (CA. >. 90°) disappeared after 1. year. It was observed that PRC analysis was able to identify important key soil properties that should be monitored when biochar is used as soil amendment. We conclude that the impact of biochar on soil functions depends mainly on biochar feedstock rather than on the pyrolysis technique used during its production. In general, the performance of biochar obtained from sludge and vegetal biomass was markedly different. © 2015 Elsevier B.V.

Llegeix més

Role of soil properties in sewage sludge toxicity to soil collembolans

Domene X., Colón J., Uras M.V., Izquierdo R., Àvila A., Alcañiz J.M. (2010) Role of soil properties in sewage sludge toxicity to soil collembolans. Soil Biology and Biochemistry. 42: 1982-1990.
Enllaç
Doi: 10.1016/j.soilbio.2010.07.019

Resum:

Soil properties are one of the most important factors explaining the different toxicity results found in different soils. Although there is knowledge about the role of soil properties on the toxicity of individual chemicals, not much is known about its relevance for sewage sludge amendments. In particular little is known about the effect of soil properties on the toxicity modulation of these complex wastes. In addition, in most studies on sewage sludges the identity of the main substances linked to the toxicity and the influence of soil properties on their bioavailability remains unknown.In this study, the toxicity of a sewage sludge to the soil collembolan Folsomia candida was assessed in nine natural soils from agricultural, grassland and woodland sites, together with the OECD soil. Correlations between the relative toxicity of sludge for collembolans in the different soils and their physical and chemical soil properties were assessed in order to identify the main compounds responsible for the effects observed. Furthermore, the relationships between the toxic effects to collembolans and water-soluble ions released by sludge, pH and electric conductivity were also assessed, together with the modulating effects of soil properties.Sludge toxicity was directly linked to the water extractable ammonium, which explained most of the mortality of the collembolans, and part of the inhibition of reproduction. For the last endpoint, nitrite also contributed significantly to the inhibition observed. The varied levels in water extractable ammonium in the different soils at equal dosages seem to be, in turn, modulated by some soil properties. Higher organic carbon contents were associated with lower toxicity of sludge, both for survival and reproduction, probably related to its higher ammonium sorption capacity. In addition, for reproduction, increasing the C/N ratio and pH appeared to increase the toxicity, probably due to both the greater difficultly in nitrification and the known unsuitability of alkaline soils for this species. © 2010 Elsevier Ltd.

Llegeix més

Restauració de sòls degradats, p 76-74. Aula d’Ecologia: Cicle de conferències 2005.

Alcañiz JM (2006) Restauració de sòls degradats, p 76-74. Aula d’Ecologia: Cicle de conferències 2005. Col•lecció Ciència i Tècnica nº 32, Ecologia, Serveide Publicacions Universitat Autònoma de Barcelona, Bellaterra, ISBN 84-490-2435-8 (CL).