The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest

Barbeta A., Mejia-Chang M., Ogaya R., Voltas J., Dawson T.E., Penuelas J. (2014) The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Global Change Biology. : 0-0.
Enllaç
Doi: 10.1111/gcb.12785

Resum:

Vegetation in water-limited ecosystems relies strongly on access to deep water reserves to withstand dry periods. Most of these ecosystems have shallow soils over deep groundwater reserves. Understanding the functioning and functional plasticity of species-specific root systems and the patterns of or differences in the use of water sources under more frequent or intense droughts is therefore necessary to properly predict the responses of seasonally dry ecosystems to future climate. We used stable isotopes to investigate the seasonal patterns of water uptake by a sclerophyll forest on sloped terrain with shallow soils. We assessed the effect of a long-term experimental drought (12 years) and the added impact of an extreme natural drought that produced widespread tree mortality and crown defoliation. The dominant species, Quercus ilex, Arbutus unedo and Phillyrea latifolia, all have dimorphic root systems enabling them to access different water sources in space and time. The plants extracted water mainly from the soil in the cold and wet seasons but increased their use of groundwater during the summer drought. Interestingly, the plants subjected to the long-term experimental drought shifted water uptake toward deeper (10-35 cm) soil layers during the wet season and reduced groundwater uptake in summer, indicating plasticity in the functional distribution of fine roots that dampened the effect of our experimental drought over the long term. An extreme drought in 2011, however, further reduced the contribution of deep soil layers and groundwater to transpiration, which resulted in greater crown defoliation in the drought-affected plants. This study suggests that extreme droughts aggravate moderate but persistent drier conditions (simulated by our manipulation) and may lead to the depletion of water from groundwater reservoirs and weathered bedrock, threatening the preservation of these Mediterranean ecosystems in their current structures and compositions.

Llegeix més

Functional diversification within bacterial lineages promotes wide functional overlapping between taxonomic groups in a Mediterranean forest soil

Curiel Yuste J., Fernandez-Gonzalez A.J., Fernandez-Lopez M., Ogaya R., Penuelas J., Lloret F. (2014) Functional diversification within bacterial lineages promotes wide functional overlapping between taxonomic groups in a Mediterranean forest soil. FEMS Microbiology Ecology. : 0-0.
Enllaç
Doi: 10.1111/1574-6941.12373

Resum:

We investigated the relationship between taxonomy and functioning of soil bacterial communities in soils from a Mediterranean holm oak forest using a high-throughput DNA pyrosequencing technique. We used nonparametric tests (Mann-Whitney U-test) to evaluate the sensitivity of each single bacterial genus within the community to the fluctuations of plant physiological and environmental abiotic variables, as well as to fluctuations in soil microbial respiration. Within-lineage (phylum/class) functional similarities were evaluated by the distribution of the Mann-Whitney U-test standardized coefficients (z) obtained for all genera within a given lineage. We further defined different ecological niches and within-lineage degree of functional diversification based on multivariate analyses (principal component analyses, PCA). Our results indicate that strong within-lineage functional diversification causes extensive functional overlapping between lineages, which hinders the translation of taxonomic diversity into a meaningful functional classification of bacteria. Our results further suggest a widespread colonization of possible ecological niches as taxonomic diversity increases. While no strong functional differentiation could be drawn from the analyses at the phylum/class level, our results suggest a strong ecological niche differentiation of bacteria based mainly on the distinct response of Gram-positive and Gram-negative bacteria to fluctuations in soil moisture. We investigated the relation between taxonomy and functioning of soil bacterial communities in soils from a Mediterranean Holm-oak forest using a high throughput DNA pyrosequencing technique. © 2014 Federation of European Microbiological Societies.

Llegeix més

Strong functional stability of soil microbial communities under semiarid Mediterranean conditions and subjected to long-term shifts in baseline precipitation

Curiel Yuste J., Fernandez-Gonzalez A.J., Fernandez-Lopez M., Ogaya R., Penuelas J., Sardans J., Lloret F. (2014) Strong functional stability of soil microbial communities under semiarid Mediterranean conditions and subjected to long-term shifts in baseline precipitation. Soil Biology and Biochemistry. 69: 223-233.
Enllaç
Doi: 10.1016/j.soilbio.2013.10.045

Resum:

We investigated the effect of soil microclimate on the structure and functioning of soil microbial communities in a Mediterranean Holm-oak forest subjected to 10 years of partial rain exclusion manipulations, simulating average drought conditions expected in Mediterranean areas for the following decades. We applied a high throughput DNA pyrosequencing technique coupled to parallel measurements of microbial respiration (RH) and temperature sensitivity of microbial respiration (Q10). Some consistent changes in the structure of bacterial communities suggest a slow process of community shifts parallel to the trend towards oligotrophy in response to long-term droughts. However, the structure of bacterial communities was mainly determined by short-term environmental fluctuations associated with sampling date (winter, spring and summer) rather than long-term (10 years) shifts in baseline precipitation. Moreover, long-term drought did not exert any chronic effect on the functioning of soil microbial communities (RH and Q10), emphasizing the functional stability of these communities to this long-term but mild shifts in water availability. We hypothesize that the particular conditions of the Mediterranean climate with strong seasonal shifts in both temperature and soil water availability but also characterized by very extreme environmental conditions during summer, was acting as a strong force in community assembling, selecting phenotypes adapted to the semiarid conditions characterizing Mediterranean ecosystems. Relations of climate with the phylogenetic structure and overall diversity of the communities as well as the distribution of the individual responses of different lineages (genera) to climate confirmed our hypotheses, evidencing communities dominated by thermotolerant and drought-tolerant phenotypes. © 2013 Elsevier Ltd.

Llegeix més

A tethered-balloon PTRMS sampling approach for surveying of landscape-scale biogenic VOC fluxes

Greenberg J.P., Penuelas J., Guenther A., Seco R., Turnipseed A., Jiang X., Filella I., Estiarte M., Sardans J., Ogaya R., Llusia J., Rapparini F. (2014) A tethered-balloon PTRMS sampling approach for surveying of landscape-scale biogenic VOC fluxes. Atmospheric Measurement Techniques. 7: 2263-2271.
Enllaç
Doi: 10.5194/amt-7-2263-2014

Resum:

Landscape-scale fluxes of biogenic gases were surveyed by deploying a 100 m Teflon tube attached to a tethered balloon as a sampling inlet for a fast-response proton-transfer-reaction mass spectrometer (PTRMS). Along with meteorological instruments deployed on the tethered balloon and a 3 m tripod and outputs from a regional weather model, these observations were used to estimate landscape-scale biogenic volatile organic compound fluxes with two micrometeorological techniques: mixed layer variance and surface layer gradients. This highly mobile sampling system was deployed at four field sites near Barcelona to estimate landscape-scale biogenic volatile organic compound (BVOC) emission factors in a relatively short period (3 weeks). The two micrometeorological techniques were compared with emissions predicted with a biogenic emission model using site-specific emission factors and land-cover characteristics for all four sites. The methods agreed within the uncertainty of the techniques in most cases, even though the locations had considerable heterogeneity in species distribution and complex terrain. Considering the wide range in reported BVOC emission factors for individual vegetation species (more than an order of magnitude), this temporally short and inexpensive flux estimation technique may be useful for constraining BVOC emission factors used as model inputs. © 2014 Author(s).

Llegeix més

Physiological and antioxidant responses of Quercus ilex to drought in two different seasons

Nogues I., Llusia J., Ogaya R., Munne-Bosch S., Sardans J., Penuelas J., Loreto F. (2014) Physiological and antioxidant responses of Quercus ilex to drought in two different seasons. Plant Biosystems. 148: 268-278.
Enllaç
Doi: 10.1080/11263504.2013.768557

Resum:

Climate change projections forecast a warming and an associated change in the distribution and intensity of rainfalls. In the case of the Mediterranean area, this will be reflected in more frequent and severe drought periods in the future. Within a long-term (9 years) manipulation experiment, we aimed to study the effect of the soil drought projected for the coming decades (an average of 10% soil moisture reduction) onto photosynthetic rates and water relations, and onto the antioxidant and anti-stress defense capacity of Quercus ilex, a dominant species in Mediterranean forests, in two different seasons, spring and summer. Results showed that photosynthesis was limited by stomatal closure in summer. However, a decrease in photosynthesis as a consequence of drought was observed only during spring, possibly due to a low pigment concentration and to an insufficient antioxidant protection. In summer, the increased resistance to CO2 entry reduced photosynthesis in control and drought-treated leaves, though the higher pigment content and antioxidant levels in summer leaves prevented a further decrease in photosynthesis as a consequence of drought. Also total monoterpene emission rates were higher in summer than in spring, though they did not change with drought, as happened with photosynthetic pigments. On the other hand, the antioxidant defense system was induced by drought in both studied seasons, indicating an efficient activation of defense responses aiming at scavenging reactive oxygen species produced in Q. ilex leaves under drought. © 2013 © 2013 Società Botanica Italiana.

Llegeix més

Foliar CO2 in a holm oak forest subjected to 15 years of climate change simulation

Ogaya R., Llusia J., Barbeta A., Asensio D., Liu D., Alessio G.A., Penuelas J. (2014) Foliar CO2 in a holm oak forest subjected to 15 years of climate change simulation. Plant Science. 226: 101-107.
Enllaç
Doi: 10.1016/j.plantsci.2014.06.010

Resum:

A long-term experimental drought to simulate future expected climatic conditions for Mediterranean forests, a 15% decrease in soil moisture for the following decades, was conducted in a holm oak forest since 1999. Net photosynthetic rate, stomatal conductance and leaf water potential were measured from 1999 to 2013 in Quercus ilex and Phillyrea latifolia, two co-dominant species of this forest. These measurements were performed in four plots, two of them received the drought treatment and the two other plots were control plots. The three studied variables decreased with increases in VPD and decreases in soil moisture in both species, but the decrease of leaf water potential during summer drought was larger in P. latifolia, whereas Q. ilex reached higher net photosynthetic rates and stomatal conductance values during rainy periods than P. latifolia. The drought treatment decreased ca. 8% the net photosynthetic rates during the overall studied period in both Q. ilex and P. latifolia, whereas there were just non-significant trends toward a decrease in leaf water potential and stomatal conductance induced by drought treatment. Future drier climate may lead to a decrease in the carbon balance of Mediterranean species, and some shrub species well resistant to drought could gain competitive advantage relative to Q. ilex, currently the dominant species of this forest. © 2014 Elsevier Ireland Ltd.

Llegeix més

Changes in DNA methylation fingerprint of Quercus ilex trees in response to experimental field drought simulating projected climate change

Rico L., Ogaya R., Barbeta A., Penuelas J. (2014) Changes in DNA methylation fingerprint of Quercus ilex trees in response to experimental field drought simulating projected climate change. Plant Biology. 16: 419-427.
Enllaç
Doi: 10.1111/plb.12049

Resum:

Rapid genetic changes in plants have been reported in response to current climate change. We assessed the capacity of trees in a natural forest to produce rapid acclimation responses based on epigenetic modifications. We analysed natural populations of Quercus ilex, the dominant tree species of Mediterranean forests, using the methylation-sensitive amplified polymorphism (MSAP) technique to assess patterns and levels of methylation in individuals from unstressed forest plots and from plots experimentally exposed to drought for 12 years at levels projected for the coming decades. The percentage of hypermethylated loci increased, and the percentage of fully methylated loci clearly decreased in plants exposed to drought. Multivariate analyses exploring the status of methylation at MSAP loci also showed clear differentiation depending on stress. The PCA scores for the MSAP profiles clearly separated the genetic from the epigenetic structure, and also significantly separated the samples within each group in response to drought. Changes in DNA methylation highlight the large capacity of plants to rapidly acclimate to changing environmental conditions, including trees with long life spans, and our results demonstrate those changes. These changes, although unable to prevent the decreased growth and higher mortality associated with this experimental drought, occurred together with a dampening in such decreases as the long-term treatment progressed. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

Llegeix més

Community structures of N2-fixing bacteria associated with the phyllosphere of a Holm oak forest and their response to drought

Rico L., Ogaya R., Terradas J., Penuelas J. (2014) Community structures of N2-fixing bacteria associated with the phyllosphere of a Holm oak forest and their response to drought. Plant Biology. 16: 586-593.
Enllaç
Doi: 10.1111/plb.12082

Resum:

Biological nitrogen (N) fixation is a key pathway in terrestrial ecosystems and is therefore critical for understanding the responses of ecosystems to global environmental changes. The free-living diazotrophic community is distributed along the canopy-to-soil profile, but the ecological significance of epiphyllic N2 fixers, despite their functional relevance, on plant foliar surfaces remains very poorly understood compared with the N2-fixing community in forest litter and soils. We assessed the community structure of N2 fixers and overall bacteria by genetic fingerprinting (t-RFLP) to explore the seasonal successional patterns of the microbial community in the natural phyllosphere of a Holm oak (Quercus ilex) forest submitted to 12-year field experiment of rain exclusion mimicking the conditions of drought projected for the coming decades. Leaves of Holm oak were analysed in different seasons over a period of 1.5 years. The bacterial community of the phyllosphere did not correspond to the surrounding soil biome in the same area. These analyses provided field evidence for the presence of free-living diazotrophs associated with the tissues of leaves of Holm oak, the dominant tree species of many Mediterranean forests. The results also revealed that the community composition is affected seasonally and inter-annually by the environment, and that the composition shifts in response to climate change. Drought treatment increased the richness of the epiphyllic microbial community, especially during the summer. These changes were associated with higher C:N ratios of leaves observed in response to drought in semiarid areas. This epiphyllic microbiota that can potentially fix N2 extends the capacity of plants to adapt to the environment. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

Llegeix més

Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees

Rivas-Ubach A., Gargallo-Garriga A., Sardans J., Oravec M., Mateu-Castell L., Perez-Trujillo M., Parella T., Ogaya R., Urban O., Penuelas J. (2014) Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees. New Phytologist. 202: 874-885.
Enllaç
Doi: 10.1111/nph.12687

Resum:

At the molecular level, folivory activity on plants has mainly been related to the foliar concentrations of nitrogen (N) and/or particular metabolites. We studied the responses of different nutrients and the whole metabolome of Quercus ilex to seasonal changes and to moderate field experimental conditions of drought, and how this drought may affect folivory activity, using stoichiometric and metabolomic techniques. Foliar potassium (K) concentrations increased in summer and consequently led to higher foliar K: phosphorus (P) and lower carbon (C): K and N: K ratios. Foliar N: P ratios were not lowest in spring as expected by the growth rate hypothesis. Trees exposed to moderate drought presented higher concentrations of total sugars and phenolics and these trees also experienced more severe folivory attack. The foliar increases in K, sugars and antioxidant concentrations in summer, the driest Mediterranean season, indicated enhanced osmoprotection under natural drought conditions. Trees under moderate drought also presented higher concentrations of sugars and phenolics; a plant response to avoid water loss. These shifts in metabolism produced an indirect relationship between increased drought and folivory activity. © 2014 New Phytologist Trust.

Llegeix més

Erratum: Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments (Biogeosciences (2014) 11 (2991-3013))

Vicca S., Bahn M., Estiarte M., Van Loon E.E., Vargas R., Alberti G., Ambus P., Arain M.A., Beier C., Bentley L.P., Borken W., Buchmann N., Collins S.L., De Dato G., Dukes J.S., Escolar C., Fay P., Guidolotti G., Hanson P.J., Kahmen A., Kroel-Dulay G., Ladreiter-Knauss T., Larsen K.S., Lellei-Kovacs E., Lebrija-Trejos E., Maestre F.T., Marhan S., Marshall M., Meir P., Miao Y., Muhr J., Niklaus P.A., Ogaya R., Penuelas J., Poll C., Rustad L.E., Savage K., Schindlbacher A., Schmidt I.K., Smith A.R., Sotta E.D., Suseela V., Tietema A., Van Gestel N., Van Straaten O., Wan S., Weber U., Janssens I.A. (2014) Erratum: Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments (Biogeosciences (2014) 11 (2991-3013)). Biogeosciences. 11: 3307-3308.
Enllaç
Doi: 10.5194/bg-11-3307-2014

Resum:

[No abstract available]

Llegeix més

Pàgines