A unified framework for diversity gradients: The adaptive trait continuum

Carnicer J., Stefanescu C., Vila R., Dincǎ V., Font X., Peñuelas J. (2013) A unified framework for diversity gradients: The adaptive trait continuum. Global Ecology and Biogeography. 22: 6-18.
Enllaç
Doi: 10.1111/j.1466-8238.2012.00762.x

Resum:

Aim Adaptive trait continua are axes of covariation observed in multivariate trait data for a given taxonomic group. These continua quantify and summarize life-history variation at the inter-specific level in multi-specific assemblages. Here we examine whether trait continua can provide a useful framework to link life-history variation with demographic and evolutionary processes in species richness gradients. Taking an altitudinal species richness gradient for Mediterranean butterflies as a study case, we examined a suite of traits (larval diet breadth, adult phenology, dispersal capacity and wing length) and species-specific habitat measures (temperature and aridity breadth). We tested whether traits and species-specific habitat measures tend to co-vary, whether they are phylogenetically conserved, and whether they are able to explain species distributions and spatial genetic variation in a large number of butterfly assemblages. Location Catalonia, Spain. Methods We formulated predictions associated with species richness gradients and adaptive trait continua. We applied principal components analyses (PCAs), structural equation modelling and phylogenetic generalized least squares models. Results We found that traits and species-specific habitat measures covaried along a main PCA axis, ranging from multivoltine trophic generalists with high dispersal capacity to univoltine (i.e. one generation per year), trophic specialist species with low dispersal capacity. This trait continuum was closely associated with the observed distributions along the altitudinal gradient and predicted inter-specific differences in patterns of spatial genetic variability (FST and genetic distances), population responses to the impacts of global change and local turnover dynamics. Main conclusions The adaptive trait continuum of Mediterranean butterflies provides an integrative and mechanistic framework to: (1) analyse geographical gradients in species richness, (2) explain inter-specific differences in population abundances, spatial distributions and demographic trends, (3) explain inter-specific differences in patterns of genetic variation (FST and genetic distances), and (4) study specialist-generalist life-history transitions frequently involved in butterfly diversification processes. © 2012 Blackwell Publishing Ltd.

Llegeix més

Distinguishing between anticipatory and responsive plasticity in a seasonally polyphenic butterfly

Esperk T., Stefanescu C., Teder T., Wiklund C., Kaasik A., Tammaru T. (2013) Distinguishing between anticipatory and responsive plasticity in a seasonally polyphenic butterfly. Evolutionary Ecology. 27: 315-332.
Enllaç
Doi: 10.1007/s10682-012-9598-7

Resum:

Seasonal generations of short-lived organisms often differ in their morphological, behavioural and life history traits, including body size. These differences may be either due to immediate effects of seasonally variable environment on organisms (responsive plasticity) or rely on presumably adaptive responses of organisms to cues signalizing forthcoming seasonal changes (anticipatory plasticity). When directly developing individuals of insects are larger than their overwintering conspecifics, the between-generation differences are typically ascribed to responsive plasticity in larval growth. We tested this hypothesis using the papilionid butterly Iphiclides podalirius as a model species. In laboratory experiments, we demonstrated that seasonal differences in food quality could not explain the observed size difference. Similarly, the size differences are not likely to be explained by the immediate effects of ambient temperature and photoperiod on larval growth. The qualitative pattern of natural size differences between the directly developing and diapausing butterflies could be reproduced in the laboratory as a response to photoperiod, indicating anticipatory character of the response. Directly developing and diapausing individuals followed an identical growth trajectory until the end of the last larval instar, with size differences appearing just a few days before pupation. Taken together, various lines of evidence suggest that between-generation size differences in I. podalirius are not caused by immediate effects of environmental factors on larval growth. Instead, these differences rather represent anticipatory plasticity and are thus likely to have an adaptive explanation. It remains currently unclear, whether the seasonal differences in adult size per se are adaptive, or if they constitute co-product of processes related to the diapause. Our study shows that it may be feasible to distinguish between different types of plasticity on the basis of empirical data even if fitness cannot be directly measured, and contributes to the emerging view about the predominantly adaptive nature of seasonal polyphenisms in insects. © 2012 Springer Science+Business Media B.V.

Llegeix més

Forces driving the composition of butterfly assemblages in Andorra

Komac B., Stefanescu C., Caritg R., Domenech M. (2013) Forces driving the composition of butterfly assemblages in Andorra. Journal of Insect Conservation. 17: 897-910.
Enllaç
Doi: 10.1007/s10841-013-9571-y

Resum:

Despite the impact that human presence has on the area, Andorra in the eastern Pyrenees still harbours a rich butterfly fauna and is a potentially excellent area for studying the effects of global change on biodiversity. The aim of this study was to identify and understand the factors that are inducing observed patterns of butterfly richness in Andorra. We used data collected between 2006 and 2010 from six transects of the Andorran Butterfly Monitoring Scheme that lie at heights from 1,000 to 2,400 m a.s.l. These transects are divided into 44 discrete sections and during the study period 18,603 individuals belonging to 126 butterfly species were recorded. The effects of elevation and habitat composition on species richness and abundance were analyzed, as was the presence of spatial structure in the butterfly assemblages. We found a clear tendency for species richness to decrease as elevation increased and also identified a major faunal turnover. Habitat composition seems to have little effect on species richness and butterfly abundance. A spatial structure was observed in the dataset, with a positive spatial autocorrelation at section scale that reflects a clear effect of altitudinal gradient on species assemblages. Finally, a cluster analysis enabled us to define two main faunistic groups, corresponding to lower (generally in closed habitats) and higher sites (generally in subalpine meadows and grasslands). We thus conclude that the elevation gradient is the principal factor driving butterfly distribution and abundance in Andorra. © 2013 Springer Science+Business Media Dordrecht.

Llegeix més

Host-associated genomic differentiation in congeneric butterflies: Now you see it, now you do not

Mikheyev A.S., McBride C.S., Mueller U.G., Parmesan C., Smee M.R., Stefanescu C., Wee B., Singer M.C. (2013) Host-associated genomic differentiation in congeneric butterflies: Now you see it, now you do not. Molecular Ecology. 22: 4753-4766.
Enllaç
Doi: 10.1111/mec.12423

Resum:

Ecotypic variation among populations may become associated with widespread genomic differentiation, but theory predicts that this should happen only under particular conditions of gene flow, selection and population size. In closely related species, we might expect the strength of host-associated genomic differentiation (HAD) to be correlated with the degree of phenotypic differentiation in host-adaptive traits. Using microsatellite and Amplified Fragment Length Polymorphism (AFLP) markers, and controlling for isolation by distance between populations, we sought HAD in two congeneric species of butterflies with different degrees of host plant specialization. Prior work on Euphydryas editha had shown strong interpopulation differentiation in host-adapted traits, resulting in incipient reproductive isolation among host-associated ecotypes. We show here that Euphydryas aurinia had much weaker host-associated phenotypic differentiation. Contrary to our expectations, we detected HAD in Euphydryas aurinia, but not in E. editha. Even within an E. aurinia population that fed on both hosts, we found weak but significant sympatric HAD that persisted in samples taken 9 years apart. The finding of significantly stronger HAD in the system with less phenotypic differentiation may seem paradoxical. Our findings can be explained by multiple factors, ranging from differences in dispersal or effective population size, to spatial variation in genomic or phenotypic traits and to structure induced by past histories of host-adapted populations. Other infrequently measured factors, such as differences in recombination rates, may also play a role. Our result adds to recent work as a further caution against assumptions of simple relationships between genomic and adaptive phenotypic differentiation. © 2013 John Wiley & Sons Ltd.

Llegeix més

Multi-generational long-distance migration of insects: Studying the painted lady butterfly in the Western Palaearctic

Stefanescu C., Páramo F., Åkesson S., Alarcón M., Ávila A., Brereton T., Carnicer J., Cassar L.F., Fox R., Heliölä J., Hill J.K., Hirneisen N., Kjellén N., Kühn E., Kuussaari M., Leskinen M., Liechti F., Musche M., Regan E.C., Reynolds D.R., Roy D.B., Ryrholm N., Schmaljohann H., Settele J., Thomas C.D., van Swaay C., Chapman J.W. (2013) Multi-generational long-distance migration of insects: Studying the painted lady butterfly in the Western Palaearctic. Ecography. 36: 474-486.
Enllaç
Doi: 10.1111/j.1600-0587.2012.07738.x

Resum:

Long-range, seasonal migration is a widespread phenomenon among insects, allowing them to track and exploit abundant but ephemeral resources over vast geographical areas. However, the basic patterns of how species shift across multiple locations and seasons are unknown in most cases, even though migrant species comprise an important component of the temperate-zone biota. The painted lady butterfly Vanessa cardui is such an example; a cosmopolitan continuously-brooded species which migrates each year between Africa and Europe, sometimes in enormous numbers. The migration of 2009 was one of the most impressive recorded, and thousands of observations were collected through citizen science programmes and systematic entomological surveys, such as high altitude insect-monitoring radar and ground-based butterfly monitoring schemes. Here we use V. cardui as a model species to better understand insect migration in the Western Palaearctic, and we capitalise on the complementary data sources available for this iconic butterfly. The migratory cycle in this species involves six generations, encompassing a latitudinal shift of thousands of kilometres (up to 60 degrees of latitude). The cycle comprises an annual poleward advance of the populations in spring followed by an equatorward return movement in autumn, with returning individuals potentially flying thousands of kilometres. We show that many long-distance migrants take advantage of favourable winds, moving downwind at high elevation (from some tens of metres from the ground to altitudes over 1000 m), pointing at strong similarities in the flight strategies used by V. cardui and other migrant Lepidoptera. Our results reveal the highly successful strategy that has evolved in these insects, and provide a useful framework for a better understanding of long-distance seasonal migration in the temperate regions worldwide. © 2012 The Authors. Journal compilation © 2012 Nordic Society Oikos.

Llegeix més